分析 (1)通過兩角差的正弦函數(shù)化簡函數(shù)的表達(dá)式,求出函數(shù)的周期,利用函數(shù)是偶函數(shù)求出φ,然后求解$f({\frac{π}{24}})$的值.
(2)由函數(shù)圖象的變換可求g(x)=-2cos($\frac{1}{2}$x-$\frac{π}{3}$),利用余弦函數(shù)的單調(diào)性可求y=g(x)的單調(diào)區(qū)間,由x∈$[{-\frac{π}{3},\frac{5π}{6}}]$,結(jié)合函數(shù)的單調(diào)性可求最大值.
解答 (本題滿分為12分)
解:(1)函數(shù)f(x)=$\sqrt{3}$sin(ωx+φ)-cos(ωx+φ)=2sin(ωx+φ-$\frac{π}{6}$),…1分
因為函數(shù)是偶函數(shù),
所以φ-$\frac{π}{6}$=kπ+$\frac{π}{2}$,k∈Z,解得:φ=kπ+$\frac{2π}{3}$,k∈Z,
∵-$\frac{π}{2}$<φ<0,
∴φ=-$\frac{π}{3}$.
函數(shù)y=f(x)圖象的兩相鄰對稱軸間的距離為$\frac{π}{2}$,
所以T=π,T=$\frac{2π}{ω}$=π,所以ω=2;
f(x)=2sin(2x-$\frac{π}{2}$)=-2cos2x,…5分
則f($\frac{π}{24}$)=-2cos(2×$\frac{π}{24}$)=-2cos($\frac{π}{3}$-$\frac{π}{4}$)=-$\frac{\sqrt{6}+\sqrt{2}}{2}$,…6分
(2)由函數(shù)圖象的變換可知,y=g(x)=-2cos($\frac{1}{2}$x-$\frac{π}{3}$),…8分
由2kπ≤$\frac{1}{2}$x-$\frac{π}{3}$≤2kπ+π,k∈Z,解得:4kπ+$\frac{2π}{3}$≤x≤4kπ+$\frac{8π}{3}$,k∈Z,
即函數(shù)y=g(x)的單調(diào)遞增區(qū)間為:[4kπ+$\frac{2π}{3}$,4kπ+$\frac{8π}{3}$]k∈Z,
由2kπ+π≤$\frac{1}{2}$x-$\frac{π}{3}$≤2kπ+2π,k∈Z,解得:4kπ+$\frac{8π}{3}$≤x≤4kπ+$\frac{14π}{3}$,k∈Z,
即函數(shù)y=g(x)的單調(diào)遞減區(qū)間為:[4kπ+$\frac{8π}{3}$,4kπ+$\frac{14π}{3}$]k∈Z,…10分
∵x∈$[{-\frac{π}{3},\frac{5π}{6}}]$,
∴結(jié)合函數(shù)的單調(diào)性可知:
當(dāng)$\frac{1}{2}$x-$\frac{π}{3}$=0,即x=$\frac{2π}{3}$時,y=g(x)最小值為-2…11分
當(dāng)$\frac{1}{2}$x-$\frac{π}{3}$=-$\frac{π}{2}$,即x=-$\frac{π}{3}$時,y=g(x)最大值為0…12分
點評 本題主要考查了兩角差的正弦函數(shù)公式,周期公式,三角函數(shù)圖象的變換規(guī)律,余弦函數(shù)的單調(diào)性,考查了數(shù)形結(jié)合思想和轉(zhuǎn)化思想的應(yīng)用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $2\sqrt{2}$ | C. | $\sqrt{3}$ | D. | $2\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{5}{2}i$ | B. | $-\frac{1}{2}i$ | C. | $-\frac{5}{2}$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com