“x≠2或y≠1”是“x+y≠3”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡(jiǎn)易邏輯
分析:根據(jù)不等式的性質(zhì),利用充分條件和必要條件的定義進(jìn)行判斷即可得到結(jié)論.
解答: 解:根據(jù)逆否命題的等價(jià)性,只需要判斷x+y=3與x=1且y=2的條件關(guān)系即可.
若x=0,y=3時(shí),滿足x+y=3,但此時(shí)x=1且y=2,不成立,即充分性不成立.
若x=1,y=2時(shí),則x+y=3成立,即必要性成立.
即x+y=3是x=1且y=2的必要不充分條件,
即“x≠1或y≠2”是“x+y≠3”的必要不充分條件,
故選:B
點(diǎn)評(píng):本題主要考查充分條件和必要條件的應(yīng)用,利用逆否命題的等價(jià)性將條件轉(zhuǎn)化為容易判斷的條件關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在球面積26πcm2的球內(nèi)作一內(nèi)接圓柱,它的底面半徑和高的比為1:3,求圓柱的全面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各選項(xiàng)中,正確的是(  )
A、若p∨q為真命題,則p∧q為真命題
B、命題“若x<-1,則x2-2x-3>0”的否命題為“若x<-1,則x2-2x-3≤0”
C、已知命題p:?x∈R使x2+x-1<0,則?p為:?x∈R使得x2+x-1≥0
D、設(shè)
a
b
是任意兩個(gè)向量,則“
a
b
=|
a
||
b
|”是“
a
b
”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱軸為x軸,焦點(diǎn)在直線5x-2y-10=0上,那么拋物線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:x2+y2-2x-4y+m=0
(1)當(dāng)m為何值時(shí),曲線C表示圓;
(2)在(1)的條件下,設(shè)直線x-y-1=0與圓C交于A,B兩點(diǎn),是否存在實(shí)數(shù)m,使得以AB為直徑的圓過原點(diǎn),若存在,求出實(shí)數(shù)m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若角α的終邊在直線y=2x上,則sinα等于( 。
A、±
1
5
B、±
5
5
C、±
2
5
5
D、±
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知空間四邊形OABC中,M為BC中點(diǎn),N為AC中點(diǎn),P為OA中點(diǎn),Q為OB中點(diǎn),若AB=OC,求證:PM⊥QN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察如圖:

若第n行的各數(shù)之和等于20112,則n=(  )
A、2011B、2012
C、1006D、1005

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式2x>1的解為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案