分析 設(shè)3x=t,則x=log3t,從而f(3x)=f(t)=log3t•lg9,由此利用對數(shù)性質(zhì)、運算法則能求出f(2)+f(5)的值.
解答 解:∵f(3x)=xlg9,
設(shè)3x=t,則x=log3t,
∴f(3x)=f(t)=log3t•lg9,
∴f(2)+f(5)=log32•lg9+log35•lg9=(log32+log35)lg9
=log310•lg9=$\frac{lg10}{lg3}•lg9$=$\frac{1}{lg3}•2lg3$=2.
故答案為:2.
點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意換元法的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 概率為$\frac{1}{7}$ | B. | 頻率為$\frac{1}{7}$ | C. | 頻率為7 | D. | 概率接近$\frac{1}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({-∞\;,\;-\frac{2}{3}}]$ | B. | $[{\frac{2}{3}\;,\;+∞})$ | C. | $({-∞\;,\;-\frac{1}{2}}]$ | D. | $({-∞\;,\;\frac{1}{2}}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(a)<f(c)<f(b) | B. | f(c)<f(b)<f(a) | C. | f(a)<f(b)<f(c) | D. | f(b)<f(c)<f(a) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1.72.5>1.73 | B. | 0.6-1>0.62 | C. | 1.70.3<0.93.1 | D. | 0.8-0.1>1.250.2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com