方程x2+x-1=0的實數(shù)解的個數(shù)為
 
考點:根的存在性及根的個數(shù)判斷
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:利用判別式求方程x2+x-1=0的實數(shù)解的個數(shù).
解答: 解:∵△=12-4×1×(-1)=5>0,
∴方程x2+x-1=0有兩個不同的實數(shù)解,
故答案為:2.
點評:本題考查了二次方程根的個數(shù)的判斷,直接用判別式即可.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+3ax-1,g(x)=f′(x)-ax-5,其中f′(x)是f(x)的導(dǎo)函數(shù).若對滿足-1≤a≤1的一切a的值,都有g(shù)(x)<0,則實數(shù)x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b、c是Rt△ABC的三邊,c為斜邊,若a2(a+b)+b2(c+a)+c2(b+a)≥kabc恒成立,則k的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(
1
2
x,g(x)=log
1
2
x,記函數(shù)h(x)=
f(x),f(x)≤g(x)
g(x),f(x)>g(x)
,則不等式h(x)≥
2
2
的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把函數(shù)y=sin(x+
π
6
)圖象上各點的橫坐標(biāo)縮短到原來的
1
2
倍(縱坐標(biāo)不變),再將圖象向右平移
π
3
個單位,那么所得圖象的函數(shù)解析式為( 。
A、y=-cos2x
B、y=cos2x
C、y=sin(
1
2
x-
π
6
)
D、y=sin(
1
2
x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某輪船在航行中每小時所耗去的燃料費與該船航行速度的立方成正比,且比例系數(shù)為a,其余費用與船的航行速度無關(guān),約為每小時b元,若該船以速度v千米/時航行,航行每千米耗去的總費用為y(元),則y與v的函數(shù)解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某中學(xué)組織春游,為了確定春游地點,打算從該學(xué)校學(xué)號為0034~2037的所有學(xué)生中,采用系統(tǒng)抽樣選50名進(jìn)行調(diào)查,則學(xué)號為2003的同學(xué)被抽到的可能性為(  )
A、
1
2003
B、
1
2004
C、
50
2003
D、
50
2004

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={a|
6
5-a
∈N+,且a∈Z},則M等于( 。
A、{2,3}
B、{1,2,3,4}
C、{1,2,3,6}
D、{-1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)O是坐標(biāo)原點,點M(x,y)是平面區(qū)域
x≤1
y≤2
x+y≥2
上的動點,點N(-1,1),則
OM
ON
的取值范圍是(  )
A、[-1,0]
B、[-1,2]
C、[0,1]
D、[0,2]

查看答案和解析>>

同步練習(xí)冊答案