分析 (1)由已知得$\frac{{a}_{n+1}}{n+1}-\frac{{a}_{n}}{n}=1$,n∈N*,從而能證明數(shù)列{$\frac{{a}_{n}}{n}$}為等差數(shù)列.
(2)求出${a}_{n}={n}^{2}$,從而bn=$\frac{2n+1}{{a}_{n}{a}_{n+1}}$=$\frac{2n+1}{{n}^{2}(n+1)^{2}}$=$\frac{1}{{n}^{2}}-\frac{1}{(n+1)^{2}}$,由此利用裂項(xiàng)求和法能求出數(shù)列{bn}的前n項(xiàng)和.
解答 證明:(1)∵數(shù)列{an}滿足a1=1,nan+1=(n+1)an+n2+n(n∈N*),
∴$\frac{{a}_{n+1}}{n+1}=\frac{{a}_{n}}{n}+1$,即$\frac{{a}_{n+1}}{n+1}-\frac{{a}_{n}}{n}=1$,n∈N*,
又$\frac{{a}_{1}}{1}$=1,
故數(shù)列{$\frac{{a}_{n}}{n}$}為首項(xiàng)為1,公差為1的等差數(shù)列.…(4分)
解:(2)∵數(shù)列{$\frac{{a}_{n}}{n}$}為首項(xiàng)為1,公差為1的等差數(shù)列,
∴$\frac{{a}_{n}}{n}=1+(n-1)×1=n$,∴${a}_{n}={n}^{2}$,
∴bn=$\frac{2n+1}{{a}_{n}{a}_{n+1}}$=$\frac{2n+1}{{n}^{2}(n+1)^{2}}$=$\frac{1}{{n}^{2}}-\frac{1}{(n+1)^{2}}$,
∴數(shù)列{bn}的前n項(xiàng)和:
Sn=(1-$\frac{1}{{2}^{2}}$)+($\frac{1}{{2}^{2}}-\frac{1}{{3}^{2}}$)+…+($\frac{1}{{n}^{2}}-\frac{1}{(n+1)^{2}}$]
=1-$\frac{1}{(n+1)^{2}}$=$\frac{{n}^{2}+2n}{(n+1)^{2}}$.…(12分)
點(diǎn)評(píng) 本題考查數(shù)列為等差數(shù)列的證明,考查數(shù)列的前n項(xiàng)和的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意裂項(xiàng)求和法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 1 | C. | 6 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | log23 | D. | 2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com