2.有下述說法:
①a>b>0是a2>b2的充要條件.
②a>b>0是$\frac{1}{a}<\frac{1}$的充要條件.
③a>b>0是a3>b3的充要條件.
④a>b>0是$\sqrt{a}$>$\sqrt$的充要條件.
則其中正確的說法有( 。
A.0個B.1個C.2個D.3個

分析 對4個命題分別進行判斷,即可得出結(jié)論.

解答 解:①a>b>0不是a2>b2的充要條件,因為(-2)2>(-1)2,但是不滿足-2>-1,
②a>b>0不是$\frac{1}{a}<\frac{1}$的充要條件,因為-1<-$\frac{1}{2}$,但是0>-1>-2,
③a>b>0是a3>b3的充要條件,正確.
④a>b>0是$\sqrt{a}$>$\sqrt$的充要條件,正確,
故選C.

點評 本題考查命題的真假判斷,考查充要條件,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=$\frac{2}{{2}^{x}+1}$+sinx,則f(-3)+f(-2)+f(-1)+f(0)+f(1)+f(2)+f(3)=7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)函數(shù)$f(x)=x+\frac{1}{x}+a$為定義在(-∞,0)∪(0,+∞)上的奇函數(shù).
(1)求實數(shù)a的值;
(2)判斷函數(shù)f(x)在區(qū)間(a+1,+∞)上的單調(diào)性,并用定義法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.“?x∈R,x2-x≥0”的否定是( 。
A.?x∈R,x2-x<0B.?x∈R,x2-x≤0
C.$?{x_0}∈R,{x_0}^2-{x_0}≤0$D.$?{x_0}∈R,x_0^2-{x_0}<0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在四棱錐中P-ABCD,底面ABCD是正方形,側(cè)面PAD⊥底面ABCD,且PA=PD=$\frac{{\sqrt{2}}}{2}$AD、E、F,分別為PC、BD的中點.
(1)求證:EF∥平面PAD;
(2)若AB=2,求三棱錐E-DFC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在棱長都是1的四面體ABCD中,$\overrightarrow{AB}$•$\overrightarrow{CD}$等于(  )
A.0B.1C.-1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在直角坐標系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}\right.$,(α為參數(shù)),以原點O為極點,x軸正半軸為極軸,建立極坐標系,曲線C2的極坐標方程為ρsin(θ+$\frac{π}{4}$)=4$\sqrt{2}$.
(Ⅰ)求曲線C1的普通方程與曲線C2的直角坐標方程;
(Ⅱ)設(shè)P為曲線C1上的動點,求點P到C2上點的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.圓x2+y2+2x-4y-3=0上到直線x+y+1=0的距離為$\sqrt{2}$的點共有3 個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)f(x)=x2-$\frac{1}{x-2}\;,\;\;g(x)=\frac{1}{x-2}$+1,則f(x)+g(x)=x2+1,x≠2.

查看答案和解析>>

同步練習(xí)冊答案