【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD的平行四邊形,∠ADC=60°, ,PA⊥面ABCD,E為PD的中點(diǎn).
(Ⅰ)求證:AB⊥PC
(Ⅱ)若PA=AB= ,求三棱錐P﹣AEC的體積.
【答案】(Ⅰ)證明:因?yàn)镻A⊥面ABCD,又AB平面ABCD,
所以AB⊥PA,
又因?yàn)椤螦BC=∠ADC=60°, ,
在△ABC中,由余弦定理有:
AC2=AB2+BC2﹣2ABBCcos60°=BC2﹣AB2
所以AB2+AC2=BC2,
即:AB⊥AC,
又因?yàn)镻A∩AC=A,又PA平面PAC,AC平面PAC,
所以AB⊥平面PAC,
又PC平面PAC,所以AB⊥PC.
(Ⅱ)解:由已知有: ,
所以PA=AB=2,AD=4,因?yàn)镻A⊥面ABCD
且E為PD的中點(diǎn),所以E點(diǎn)到平面ADC的距離為 ,
所以三棱錐P﹣AEC的體積:
VP﹣AEC=VD﹣AEC=VE﹣ADC=
= × .
【解析】(1)因?yàn)镻A⊥面ABCD,則AB⊥PA,根據(jù)邊角的大小關(guān)系,由余弦定理可證出△ABC為直角三角形,即AB⊥AC,從而可證出AB⊥面PAC,即AB⊥PC,(2)由已知可得出其各邊的大小,由于E為PD的中點(diǎn),則不難得出E到面ADC的距離為1,VP﹣AEC=VD﹣AEC=VE﹣ADC= S △ A D C,即可得出結(jié)果.
【考點(diǎn)精析】本題主要考查了空間中直線與直線之間的位置關(guān)系的相關(guān)知識(shí)點(diǎn),需要掌握相交直線:同一平面內(nèi),有且只有一個(gè)公共點(diǎn);平行直線:同一平面內(nèi),沒有公共點(diǎn);異面直線: 不同在任何一個(gè)平面內(nèi),沒有公共點(diǎn)才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c且acosB=4,bsinA=3.
(1)求tanB及邊長(zhǎng)a的值;
(2)若△ABC的面積S=9,求△ABC的周長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,MCN是某海灣旅游區(qū)的一角,為營(yíng)造更加優(yōu)美的旅游環(huán)境,旅游區(qū)管委會(huì)決定建立面積為4 平方千米的三角形主題游戲樂園ABC,并在區(qū)域CDE建立水上餐廳.已知∠ACB=120°,∠DCE=30°.
(1)設(shè)AC=x,AB=y,用x表示y,并求y的最小值;
(2)設(shè)∠ACD=θ(θ為銳角),當(dāng)AB最小時(shí),用θ表示區(qū)域CDE的面積S,并求S的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}中,a1=1,an+1= .
(1)證明:數(shù)列{a2n﹣ }是等比數(shù)列;
(2)求a2n及a2n﹣1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b,c分別是△ABC的角A,B,C所對(duì)的邊,且c=2,C= .
(1)若△ABC的面積等于 ,求a,b;
(2)若sinC+sin(B﹣A)=2sin2A,求A的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=x3+3ax2+bx+a2(a>1)在x=﹣1時(shí)的極值為0.求常數(shù)a,b的值并求f(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:(x+2)2+y2=5,直線l:mx﹣y+1+2m=0,m∈R.
(1)求證:對(duì)m∈R,直線l與圓C總有兩個(gè)不同的交點(diǎn)A、B;
(2)求弦AB的中點(diǎn)M的軌跡方程,并說(shuō)明其軌跡是什么曲線;
(3)是否存在實(shí)數(shù)m,使得圓C上有四點(diǎn)到直線l的距離為 ?若存在,求出m的范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= +ax,x>1.
(1)若函數(shù)f(x)在 處取得極值,求a的值;
(2)若方程(2x﹣m)lnx+x=0在(1,e]上有兩個(gè)不等實(shí)根,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)是定義在[﹣1,1]上的奇函數(shù),f(﹣1)=﹣1,且對(duì)任意a,b∈[﹣1,1],當(dāng)a≠b時(shí),都有 ;
(1)解不等式f ;
(2)若f(x)≤m2﹣2km+1對(duì)所有x∈[﹣1,1],k∈[﹣1,1]恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com