【題目】提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù).當(dāng)橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當(dāng)車流密度不超過20輛/千米時,車流速度為60千米/小時.研究表明:當(dāng)時,車流速度是車流密度的一次函數(shù).
(1)當(dāng)時,求函數(shù)的表達式;
(2)當(dāng)車流密度為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)可以達到最大,并求出最大值.(精確到1輛/小時)
【答案】(1);
(2)當(dāng)車流密度為輛/千米時,車流量達到最大,且最大值約輛/小時.
【解析】試題分析:(1)設(shè)v(x)=ax+b.利用x的范圍,列出方程組求解a,b,即可得到函數(shù)的解析式;(2)求出車流量f(x)=v(x)x的表達式,然后求解最大值即可
試題解析:(1)由題意:當(dāng)0≤x≤20時,v(x)=60;
當(dāng)20≤x≤200時,設(shè)v(x)=ax+b,
再由已知得解得故函數(shù)v(x)的表達式為
(2)依題意并由(1)可得
f(x)=
當(dāng)0≤x≤20時,f(x)為增函數(shù),故當(dāng)x=20時,其最大值為60×20=1200;
當(dāng)20≤x≤200時,f(x)=x(200-x)≤ []2=,
當(dāng)且僅當(dāng)x=200-x,即x=100時,等號成立.
所以,當(dāng)x=100時,f(x)在區(qū)間上取得最大值.
綜上,當(dāng)x=100時,f(x)在區(qū)間上取得最大值≈3 333,
即當(dāng)車流密度為100輛/千米時,車流量可以達到最大,最大值約為3 333輛/小時.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù), ,則對于不同的實數(shù),函數(shù)的單調(diào)區(qū)間個數(shù)不可能是( )
A. 1個 B. 2個 C. 3個 D. 5個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司在迎新年晚會上舉行抽獎活動,有甲、乙兩個抽獎方案供員工選擇;
方案甲:員工最多有兩次抽獎機會,每次抽獎的中獎率為.第一次抽獎,若未中獎,則抽獎結(jié)束.若中獎,則通過拋一枚質(zhì)地均勻的硬幣,決定是否繼續(xù)進行第二次抽獎,規(guī)定:若拋出硬幣,反面朝上,員工則獲得500元獎金,不進行第二次抽獎;若正面朝上,員工則須進行第二次抽獎,且在第二次抽獎中,若中獎,獲得獎金1000元;若未中獎,則所獲獎金為0元.
方案乙:員工連續(xù)三次抽獎,每次中獎率均為,每次中獎均可獲獎金400元.
(1)求某員工選擇方案甲進行抽獎所獲獎金(元)的分布列;
(2)某員工選擇方案乙與選擇方案甲進行抽獎,試比較哪個方案更劃算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)若,求函數(shù)的極值.
(2)若在有唯一的零點,求的取值范圍.
(3)若,設(shè),求證: 在內(nèi)有唯一的零點,且對(2)中的,滿足.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求曲線在點處的切線方程;
(2)若函數(shù)在其定義域內(nèi)為增函數(shù),求的取值范圍;
(3)在(2)的條件下,設(shè)函數(shù),若在上至少存在一點,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】計劃在某水庫建一座至多安裝臺發(fā)電機的水電站,過去年的水文資料顯示,水庫年入流量(年入流量:一年內(nèi)上游來水與庫區(qū)降水之和.單位:億立方米)都在40以上,不足的年份有年,不低于且不超過的年份有年,超過的年份有年,將年入流量在以上三段的頻率作為相應(yīng)段的概率,假設(shè)各年的年入流量相互獨立.
(1)求未來年中,設(shè)表示流量超過的年數(shù),求的分布列及期望;
(2)水電站希望安裝的發(fā)電機盡可能運行,但每年發(fā)電機最多可運行臺數(shù)受年入流量限制,并有如下關(guān)系:
年入流量 | |||
發(fā)電機最多可運行臺數(shù) |
若某臺發(fā)電機運行,則該臺年利潤為萬元,若某臺發(fā)電機未運行,則該臺年虧損萬元,欲使水電站年總利潤的均值達到最大,應(yīng)安裝發(fā)電機多少臺?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】讀下列所給程序,依據(jù)程序畫出程序框圖,并說明其功能.
INPUT “輸入三個正數(shù)a,b,c=”;a,b,c
IF a+b>c AND a+c>b AND b+c>a THEN
p=(a+b+c)/2
S=SQR(p*(p-a)*(p-b)*(p-c))
PRINT “三角形的面積S=”S
ELSE
PRINT “構(gòu)不成三角形”
END IF
END.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知☉O:x2+y2=1和定點A(2,1),由☉O外一點P(a,b)向☉O引切線PQ,切點為Q,且滿足|PQ|=|PA|.
(1)求實數(shù)a,b間滿足的等量關(guān)系.
(2)求線段PQ長的最小值.
(3)若以P為圓心所作的☉P與☉O有公共點,試求半徑取最小值時☉P的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com