【題目】設(shè)為直線,是兩個不同的平面,下列命題中正確的是(  )

A. α,β,則αβB. α,β,則αβ

C. α,β,則αβD. αβα,則β

【答案】B

【解析】

利用空間中直線與直線、直線與平面、平面與平面間的位置關(guān)系以及垂直、平行判定與性質(zhì)定理來判斷各選項的正誤。

對于A選項,當直線與平面的交線平行時,,,但不平行,A選項錯誤;

對于B選項,根據(jù)垂直于同一直線的兩平面可知B選項正確;

對于C選項,,過直線作平面,使得該平面與平面相交,交線為直線,由直線與平面平行的性質(zhì)定理得知,由于,則,,C選項錯誤;

對于D選項,,過直線作平面,使得該平面與平面相交,交線為直線,由直線與平面平行的性質(zhì)定理得知,,但平面內(nèi)的直線與平面的位置關(guān)系不一定垂直,從而直線與平面的位置關(guān)系也不確定,D選項錯誤。故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)設(shè),:軸正半軸的交點為,與曲線的交點為,直線軸的交點為.

(1)表示;

(2)求證:;

(3)設(shè),,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)當時,求函數(shù)的單調(diào)區(qū)間;

(2)當時,若存在,使不等式成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=emx﹣lnx﹣2.
(1)若m=1,證明:存在唯一實數(shù)t∈( ,1),使得f′(t)=0;
(2)求證:存在0<m<1,使得f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市大力推廣純電動汽車,對購買用戶依照車輛出廠續(xù)駛里程的行業(yè)標準,予以地方財政補貼.其補貼標準如下表:

2017年底隨機調(diào)査該市1000輛純電動汽車,統(tǒng)計其出廠續(xù)駛里程,得到頻率分布直方圖如圖所示.

用樣本估計總體,頻率估計概率,解決如下問題:

(1)求該市純電動汽車2017年地方財政補貼的均值;

(2)某企業(yè)統(tǒng)計2017年其充電站100天中各天充電車輛數(shù),得如下的頻數(shù)分布表:

(同一組數(shù)據(jù)用該區(qū)間的中點值作代表)

2018年2月,國家出臺政策,將純電動汽車財政補貼逐步轉(zhuǎn)移到充電基礎(chǔ)設(shè)施建設(shè)上來.該企業(yè)擬將轉(zhuǎn)移補貼資金用于添置新型充電設(shè)備.現(xiàn)有直流、交流兩種充電樁可供購置.直流充電樁5萬元/臺,每臺每天最多可以充電30輛車,每天維護費用500元/臺; 交流充電樁1萬元/臺,每臺每天最多可以充電4輛車,每天維護費用80元/臺.

該企業(yè)現(xiàn)有兩種購置方案:

方案一:購買100臺直流充電樁和900臺交流充電樁;

方案二:購買200臺直流充電樁和400臺交流充電樁.

假設(shè)車輛充電時優(yōu)先使用新設(shè)備,且充電一輛車產(chǎn)生25元的收入,用2017年的統(tǒng)計數(shù)據(jù),分別估計該企業(yè)在兩種方案下新設(shè)備產(chǎn)生的日利潤.(日利潤日收入日維護費用)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某巨型摩天輪.其旋轉(zhuǎn)半徑50米,最高點距地面110米,運行一周大約21分鐘.某人在最低點的位置坐上摩天輪,則第35分鐘時他距地面大約為( )米.

A. 75 B. 85 C. 100 D. 110

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】統(tǒng)計表明某型號汽車在勻速行駛中每小時的耗油量()關(guān)于行駛速度(千米/小時)的函數(shù)為

(1)千米/小時時,行駛千米耗油量多少升?

(2)若油箱有升油,則該型號汽車最多行駛多少千米?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓ab0)的離心率,過點A0-b)和Ba,0)的直線與原點的距離為

1)求橢圓的方程.

2)已知定點E-1,0),若直線ykx2k≠0)與橢圓交于C、D兩點.問:是否存在k的值,使以CD為直徑的圓過E?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某名校從2008年到2017年考入清華、北大的人數(shù)可以通過以下表格反映出來.(為了方便計算,將2008年編號為1,2009年編號為2,以此類推……)

年份

人數(shù)

(1)根據(jù)最近5年的數(shù)據(jù),利用最小二乘法求出之間的線性回歸方程,并用以預(yù)測2018年該校考入清華、北大的人數(shù);(結(jié)果要求四舍五入至個位)

(2)從這10年的數(shù)據(jù)中隨機抽取2年,記其中考入清華、北大的人數(shù)不少于的有年,

的分布數(shù)列和數(shù)學(xué)期望.

參考公式:.

查看答案和解析>>

同步練習(xí)冊答案