【題目】某人研究中學(xué)生的性別與成績(jī)、視力、智商、閱讀量這4個(gè)變量的關(guān)系,隨機(jī)抽查了52名中學(xué)生,得到統(tǒng)計(jì)數(shù)據(jù)如表1至表4,則與性別有關(guān)聯(lián)的可能性最大的變量是( )
表1
成績(jī) | 不及格 | 及格 | 總計(jì) |
男 | 6 | 14 | 20 |
女 | 10 | 22 | 32 |
總計(jì) | 16 | 36 | 52 |
表2
視力 | 好 | 差 | 總計(jì) |
男 | 4 | 16 | 20 |
女 | 12 | 20 | 32 |
總計(jì) | 16 | 36 | 52 |
表3
智商 | 偏高 | 正常 | 總計(jì) |
男 | 8 | 12 | 20 |
女 | 8 | 24 | 32 |
總計(jì) | 16 | 36 | 52 |
表4
閱讀量 | 豐富 | 不豐富 | 總計(jì) |
男 | 14 | 6 | 20 |
女 | 2 | 30 | 32 |
總計(jì) | 16 | 36 | 52 |
A.成績(jī)
B.視力
C.智商
D.閱讀量
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)= 的定義域?yàn)椋?/span> )
A.(0, )
B.(2,+∞)
C.(0, )∪(2,+∞)
D.(0, ]∪[2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,內(nèi)角A、B、C的對(duì)邊分別為a,b,c,且a>c,已知 =2,cosB= ,b=3,求:
(1)a和c的值;
(2)cos(B﹣C)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且滿足.
(I)求證:是等比數(shù)列;
(II)求證:不是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)求的最大值與最小值;
(2)若對(duì)任意的,恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】教材上一例問(wèn)題如下:
一只紅鈴蟲(chóng)的產(chǎn)卵數(shù)y和溫度x有關(guān),現(xiàn)收集了7組觀測(cè)數(shù)據(jù)如下表,試建立y與x之間的回歸方程.
溫度 x/℃ | 21 | 23 | 25 | 27 | 29 | 32 | 35 |
產(chǎn)卵數(shù)y/個(gè) | 7 | 11 | 21 | 24 | 66 | 115 | 325 |
某同學(xué)利用圖形計(jì)算器研究它時(shí),先作出散點(diǎn)圖(如圖所示),發(fā)現(xiàn)兩個(gè)變量不呈線性相關(guān)關(guān)系. 根據(jù)已有的函數(shù)知識(shí),發(fā)現(xiàn)樣本點(diǎn)分布在某一條指數(shù)型曲線的附近(和是待定的參數(shù)),于是進(jìn)行了如下的計(jì)算:
根據(jù)以上計(jì)算結(jié)果,可以得到紅鈴蟲(chóng)的產(chǎn)卵數(shù)y對(duì)溫度x的回歸方程為__________.(精確到0.0001) (提示:利用代換可轉(zhuǎn)化為線性關(guān)系)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知首項(xiàng)是1的兩個(gè)數(shù)列{an},{bn}(bn≠0,n∈N*)滿足anbn+1﹣an+1bn+2bn+1bn=0.
(1)令cn= ,求數(shù)列{cn}的通項(xiàng)公式;
(2)若bn=3n﹣1 , 求數(shù)列{an}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex+e﹣x , 其中e是自然對(duì)數(shù)的底數(shù).
(1)證明:f(x)是R上的偶函數(shù);
(2)若關(guān)于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求實(shí)數(shù)m的取值范圍;
(3)已知正數(shù)a滿足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,試比較ea﹣1與ae﹣1的大小,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)= (|x﹣a2|+|x﹣2a2|﹣3a2),若x∈R,f(x﹣1)≤f(x),則實(shí)數(shù)a的取值范圍為( )
A.[﹣ , ]
B.[﹣ , ]
C.[﹣ , ]
D.[﹣ , ]
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com