【題目】如圖,在直三棱柱中,,,是的中點(diǎn),是的中點(diǎn).
(1)求異面直線與所成角的大;
(2)若直三棱柱的體積為,求四棱錐的體積.
【答案】(1);(2);
【解析】
(1)以為坐標(biāo)原點(diǎn),以,,為,,軸正方向建立空間直角坐標(biāo)系,分別求出異面直線與的方向向量,代入向量夾角公式,即可求出異面直線與所成角的大。
(2)連接.由,由已知中,是的中點(diǎn),面,我們根據(jù)等腰三角形“三線合一”的性質(zhì)及線面垂直的性質(zhì),即可得到,,進(jìn)而根據(jù)線面垂直的判定定理,得到面,故即為四棱錐的高,求出棱錐的底面面積,代入棱錐體積公式,即可得到答案.
(1)以為坐標(biāo)原點(diǎn),以,,為軸正方向建立空間直角坐標(biāo)系.不妨設(shè).
依題意,可得點(diǎn)的坐標(biāo),
于是,由,
則異面直線與所成角的大小為.
(2)連接.由,是的中點(diǎn),得;
由面,面,得.
又,因此面,
由直三棱柱的體積為.可得.
所以,四棱錐的體積為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方形的邊長為1,點(diǎn)在邊上,點(diǎn)在邊上,.動(dòng)點(diǎn)從出發(fā)沿直線向運(yùn)動(dòng),每當(dāng)碰到正方形的邊時(shí)反彈,反彈時(shí)反射角等于入射角,當(dāng)點(diǎn)第一次碰到時(shí),與正方形的邊碰撞的次數(shù)為( )
A. 4B. 3C. 8D. 6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)狱c(diǎn)P與兩個(gè)定點(diǎn)O(0,0),A(3,0)的距離的比值為2,點(diǎn)P的軌跡為曲線C.
(1)求曲線C的軌跡方程
(2)過點(diǎn)(﹣1,0)作直線與曲線C交于A,B兩點(diǎn),設(shè)點(diǎn)M坐標(biāo)為(4,0),求△ABM面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】漢中市2019年油菜花節(jié)在漢臺(tái)區(qū)舉辦,組委會(huì)將甲、乙等6名工作人員分配到兩個(gè)不同的接待處負(fù)責(zé)參與接待工作,每個(gè)接待處至少2人,則甲、乙兩人不在同一接待處的分配方法共有( )
A. 12種B. 22種C. 28種D. 30種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前n項(xiàng)和為,對(duì)一切,點(diǎn)都在函數(shù)的圖像上.
(1)證明:當(dāng)時(shí),;
(2)求數(shù)列的通項(xiàng)公式;
(3)設(shè)為數(shù)列的前n項(xiàng)的積,若不等式對(duì)一切成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)集合,或,對(duì)于任意,定義,對(duì)任意,定義,記為集合的元素個(gè)數(shù),求的值;
(2)在等差數(shù)列和等比數(shù)列中,,,是否存在正整數(shù),使得數(shù)列的所有項(xiàng)都在數(shù)列中,若存在,求出所有的,若不存在,說明理由;
(3)已知當(dāng)時(shí),有,根據(jù)此信息,若對(duì)任意,都有,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為圓上一動(dòng)點(diǎn),圓心關(guān)于軸的對(duì)稱點(diǎn)為,點(diǎn)分別是線段上的點(diǎn),且.
(1)求點(diǎn)的軌跡方程;
(2)直線與點(diǎn)的軌跡只有一個(gè)公共點(diǎn),且點(diǎn)在第二象限,過坐標(biāo)原點(diǎn)且與垂直的直線與圓相交于兩點(diǎn),求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,M為△ABC的中線AD的中點(diǎn),過點(diǎn)M的直線分別交線段AB、AC于點(diǎn)P、Q兩點(diǎn),設(shè),,記.
(1)求的值;
(2)求函數(shù)的解析式(指明定義域);
(3)設(shè),,若對(duì)任意,總存在,使得成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)市政府提出的以新舊動(dòng)能轉(zhuǎn)換為主題的發(fā)展戰(zhàn)略,某公司花費(fèi)100萬元成本購買了1套新設(shè)備用于擴(kuò)大生產(chǎn),預(yù)計(jì)該設(shè)備每年收入100萬元,第一年該設(shè)備的各種消耗成本為8萬元,且從第二年開始每年比上一年消耗成本增加8萬元.
(1)求該設(shè)備使用x年的總利潤y(萬元)與使用年數(shù)x(x∈N*)的函數(shù)關(guān)系式(總利潤=總收入﹣總成本);
(2)這套設(shè)備使用多少年,可使年平均利潤最大?并求出年平均利潤的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com