5.已知雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦點分別為F1,F(xiàn)2,焦距為2c,直線$y=\frac{{\sqrt{3}}}{3}(x+c)$與雙曲線的一個交點P滿足∠PF2F1=2∠PF1F2,則雙曲線的離心率e為(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$2\sqrt{3}+1$D.$\sqrt{3}+1$

分析 由題意∠F1PF2=90°,利用直角三角形的邊角關(guān)系即可得到|PF2|=c,|PF1|=$\sqrt{3}$c,再利用雙曲線的定義及離心率的計算公式即可得出.

解答 解:如圖所示,∠PF2F1=2∠PF1F2=60°,∠F1PF2=90°,
∴|PF2|=c,|PF1|=$\sqrt{3}$c,
由雙曲線的定義可得:|PF1|-|PF2|=2a,
∴$\sqrt{3}c-c=2a$,
解得e=$\frac{c}{a}$=$\sqrt{3}+1$.
故選:D.

點評 熟練掌握圓的性質(zhì)、直角三角形的邊角關(guān)系、雙曲線的定義、離心率的計算公式是解題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=sin(π-ωx)cosωx+cos2ωx(ω>0)的最小正周期為π.
(1)求ω的值;
(2)將函數(shù)y=f(x)的圖象上各點的橫坐標縮短到原來的$\frac{1}{2}$,縱坐標不變,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)在區(qū)間[0,$\frac{π}{16}$]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.己知二次函數(shù)f(x)的最小值為1,且f(0)=f(2)=3
(1)求f(x)的解析式;
(2)若當x∈[-3,-1]時,y=f(x)的圖象恒在y=2x+2m+1的圖象上方,試確定實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知定義在R上的函數(shù)f(x)的圖象關(guān)于原點對稱,當x>0時,有f(x)=2x-log3(x2-3x+5),則f(-2)=-3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知偶函數(shù)f(x)在區(qū)間[0,+∞)上為增函數(shù),且f(-1)=$\frac{1}{2}$,若實數(shù)a滿足f(loga3)+f(${log_a}\frac{1}{3}$)≤1,則實數(shù)a的取值范圍為a≥3,或0<a≤$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知集合U=R,函數(shù)f(x)=$\sqrt{x-3}$-$\frac{1}{\sqrt{7-x}}$的定義域為集合A,集合B={x|2≤x<10},集合C={x|x>a}.
(1)求A,(∁UA)∩B;
(2)若(∁UB)∪C=R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.長方體的長寬高分別是$\sqrt{3}$,2,$\sqrt{5}$,則其外接球的體積是4$\sqrt{3}π$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.四棱錐P-ABCD中,四邊形ABCD為平行四邊形,AC與BD交于點O,點G為BD上一點,BG=2GD,$\overrightarrow{PA}$=$\overrightarrow{a}$,$\overrightarrow{PB}$=$\overrightarrow$,$\overrightarrow{PC}$=$\overrightarrow{c}$,用基底{$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$}表示向量$\overrightarrow{PG}$=$\frac{2}{3}\overrightarrow{a}-\frac{1}{3}\overrightarrow+\frac{2}{3}\overrightarrow{c}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知等比數(shù)列{an}的各項均為正數(shù),Sn為其前n項和,對于任意的n∈N*,滿足關(guān)系式2Sn=3an-3.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}的通項公式是bn=$\frac{1}{lo{g}_{3}{a}_{n}(lo{g}_{3}{{a}_{n}}^{2}+1)}$,求證對一切的正整數(shù)n都有:b1+b2+…+bn<$\frac{2}{3}$.

查看答案和解析>>

同步練習冊答案