【題目】如圖,已知點在圓柱的底面圓上,為圓的直徑.

(1)若圓柱的體積,,求異面直線所成的角(用反三角函數(shù)值表示結(jié)果);

(2)若圓柱的軸截面是邊長為2的正方形,四面體的外接球為球,求兩點在球上的球面距離.

【答案】(1)異面直線所成的角為;(2)

【解析】

(1)由題設(shè)條件,以O為原點,分別以OB,OO1y,z軸的正向,并以AB的垂直平分線為x軸,建立空間直角坐標系,求出的坐標,用公式求出線線角的余弦即得.

(2)由題意找到球心并求得R與∠AGB,即可求出A,B兩點在球G上的球面距離.

(1)以O為原點,分別以OBOO1y,z軸的正向,并以AB的垂直平分線為x軸,

建立空間直角坐標系.

由題意圓柱的體積=4,解得AA1=3.

易得各點的坐標分別為:A(0,﹣2,0),,A1(0,﹣2,3),B(0,2,0).

,

設(shè)的夾角為θ,異面直線A1BAP所成的角為α,

,得,

即異面直線A1BAP所成角的大小為arccos

(2)由題意得AA1=2,OB=1,四面體的外接球球心在A1B的中點,所以R=,此時=,所以兩點在球上的球面距離為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點分別為,,,為橢圓上的兩動點,且以,,四個點為頂點的凸四邊形的面積的最大值為

1)求橢圓的離心率;

2)若橢圓經(jīng)過點,且直線的斜率是直線的斜率的等比中項,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面四邊形中,等邊三角形,,以為折痕將折起,使得平面平面

(1)設(shè)的中點,求證:平面;

(2)若與平面所成角的正切值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,側(cè)面是矩形,,,且.

(1)求證:平面平面

(2)設(shè)的中點,判斷并證明在線段上是否存在點,使平面,若存在,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)一位高三班主任對本班50名學(xué)生學(xué)習(xí)積極性和對待班級工作的態(tài)度進行調(diào)查,得到的統(tǒng)計數(shù)據(jù)如表所示:

積極參加班級工作

不積極參加班級工作

合計

學(xué)習(xí)積極性高

18

7

25

學(xué)習(xí)積極性不高

6

19

25

合計

24

26

50

如果隨機調(diào)查這個班的一名學(xué)生,求事件A:抽到不積極參加班級工作且學(xué)習(xí)積極性不高的學(xué)生的概率;

若不積極參加班級工作且學(xué)習(xí)積極性高的7名學(xué)生中有兩名男生,現(xiàn)從中抽取兩名學(xué)生參加某項活動,請用字母代表不同的學(xué)生列舉出抽取的所有可能結(jié)果;

的條件下,求事件B:兩名學(xué)生中恰有1名男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點及圓.

1)若直線過點且被圓截得的線段長為,的方程;

(2)求過點的圓的弦的中點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,兩焦點與短軸的一個端點的連線構(gòu)成的三角形面積為.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)與圓O相切的直線l交橢圓CA,B兩點(O為坐標原點),求△AOB面積的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某單位甲、乙、丙三個部門的員工人數(shù)分別為32,48現(xiàn)采用分層抽樣的方法從中抽取7人,進行睡眠時間的調(diào)查.

應(yīng)從甲、乙、丙三個部門的員工中分別抽取多少人?

若抽出的7人中有3人睡眠不足,4人睡眠充足,現(xiàn)從這7人中隨機抽取3人做進一步的身體檢查.

X表示抽取的3人中睡眠不足的員工人數(shù),求隨機變量X的數(shù)學(xué)期望和方差;

設(shè)A為事件“抽取的3人中,既有睡眠充足的員工,也有睡眠不足的員工”,求事件A發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)若直線與曲線恒相切于同一定點,求直線的方程;

(2)若當(dāng)時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案