【題目】國家質(zhì)量監(jiān)督檢驗檢疫局于2004年5月31日發(fā)布了新的《車輛駕駛?cè)藛T血液、呼吸酒精含量閥值與檢驗》國家標(biāo)準,新標(biāo)準規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫克升為飲酒駕車,血液中的酒精含量大于或等于80毫克/百毫升為醉酒駕車,經(jīng)過反復(fù)試驗,喝1瓶啤酒后酒精在人體血液中的變化規(guī)律的“散點圖”如下:

該函數(shù)模型如下:

根據(jù)上述條件,回答以下問題:

(1)試計算喝1瓶啤酒后多少小時血液中的酒精含量達到最大值?最大值是多少?

(2)試計算喝1瓶啤酒后多少小時后才可以駕車?(時間以整小時計算)

(參數(shù)數(shù)據(jù): ,

【答案】1喝1瓶啤酒后1.5小時血液中的酒精含量達到最大值44.42毫克/百毫升;(21瓶啤酒后需6小時后才可以合法駕車.

【解析】試題分析:(1)由圖可知,當(dāng)函數(shù)取得最大值時, ,根據(jù)函數(shù)模型,即可求出最大值;(2))由題意知,當(dāng)車輛駕駛?cè)藛T血液中的酒精小于20毫克/百毫升時可以駕車,此時,然后解不等式,即可求出.

試題解析:(1)由圖可知,當(dāng)函數(shù)取得最大值時, ,

此時,

當(dāng),即時,函數(shù)取得最大值為.

故喝1瓶啤酒后1.5小時血液中的酒精含量達到最大值44.42毫克/百毫升.

(2)由題意知,當(dāng)車輛駕駛?cè)藛T血液中的酒精小于20毫克/百毫升時可以駕車,此時.

,得: ,

兩邊取自然對數(shù)得:

,故喝1瓶啤酒后需6小時后才可以合法駕車.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)定義在上且滿足下列兩個條件:

①對任意都有;

②當(dāng),

1)求,并證明函數(shù)上是奇函數(shù);

2)驗證函數(shù)是否滿足這些條件;

3)若,試求函數(shù)的零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為迎接2017年“雙11”,“雙12”購物狂歡節(jié)的來臨,某青花瓷生產(chǎn)廠家計劃每天生產(chǎn)湯碗、花瓶、茶杯這三種瓷器共100個,生產(chǎn)一個湯碗需5分鐘,生產(chǎn)一個花瓶需7分鐘,生產(chǎn)一個茶杯需4分鐘,已知總生產(chǎn)時間不超過10小時.若生產(chǎn)一個湯碗可獲利潤5元,生產(chǎn)一個花瓶可獲利潤6元,生產(chǎn)一個茶杯可獲利潤3元.
(1)使用每天生產(chǎn)的湯碗個數(shù)x與花瓶個數(shù)y表示每天的利潤ω(元);
(2)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx+a2(a、b∈R)
(1)若函數(shù)f(x)在x=1處有極值為10,求b的值;
(2)若a=﹣4,f(x)在x∈[0,2]上單調(diào)遞增,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分別是AC、AD上的動點,且

(1)求證:不論為何值,總有平面BEF⊥平面ABC;

(2)當(dāng)λ為何值時,平面BEF⊥平面ACD ?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過點A(﹣4,0)的動直線l與拋物線C:x2=2py(p>0)相交于B、C兩點.
(1)當(dāng)l的斜率是時, ,求拋物線C的方程;
(2)設(shè)BC的中垂線在y軸上的截距為b,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】語句p:曲線x2﹣2mx+y2﹣4y+2m+7=0表示圓;語句q:曲線 + =1表示焦點在x軸上的橢圓,若p∨q為真命題,¬p為真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在實數(shù)集R中,已知集合A={x| ≥0}和集合B={x||x﹣1|+|x+1|≥2},則A∩B=( )
A.{﹣2}∪[2,+∞)
B.(﹣∞,﹣2]∪[2,+∞)
C.[2,+∞)
D.{0}∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域為的奇函數(shù).

1)求的值;

(2)用函數(shù)單調(diào)性的定義證明函數(shù)上是增函數(shù).

查看答案和解析>>

同步練習(xí)冊答案