【題目】山東新舊動能轉(zhuǎn)換綜合試驗(yàn)區(qū)是黨的十九大后獲批的首個區(qū)域性國家發(fā)展戰(zhàn)略,也是中國第一個以新舊動能轉(zhuǎn)換為主題的區(qū)域發(fā)展戰(zhàn)略.泰安某高新技術(shù)企業(yè)決定抓住發(fā)展機(jī)遇,加快企業(yè)發(fā)展.已知該企業(yè)的年固定成本為500萬元,每生產(chǎn)設(shè)備臺,需另投入成本萬元.若年產(chǎn)量不足80臺,則;若年產(chǎn)量不小于80臺,則.每臺設(shè)備售價為100萬元,通過市場分析,該企業(yè)生產(chǎn)的設(shè)備能全部售完.

1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(臺)的關(guān)系式;

2)年產(chǎn)量為多少臺時,該企業(yè)所獲利潤最大?

【答案】1)當(dāng)時,;當(dāng)時,.2)當(dāng)年產(chǎn)量為90臺時,該企業(yè)在這一電子設(shè)備的生產(chǎn)中所獲利潤最大

【解析】

1)利用已知條件分段求解函數(shù)的解析式即可.

2)利用分段函數(shù),分段求解函數(shù)的最值,即可得到結(jié)果.

解:(1)當(dāng)時,

當(dāng)時,.

所以當(dāng)時,;

當(dāng)時,.

2)當(dāng)時,;

當(dāng)時,取得最大值,最大值為1300.

當(dāng)時,

當(dāng)且僅當(dāng),即時,取得最大值,最大值為1500.

所以當(dāng)年產(chǎn)量為90臺時,該企業(yè)在這一電子設(shè)備的生產(chǎn)中所獲利潤最大,最大利潤為1500萬元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線的焦點(diǎn)為,過且斜率為的直線交于,兩點(diǎn),

(1)求的方程;

(2)求過點(diǎn),且與的準(zhǔn)線相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列中,.

(1)是否存在實(shí)數(shù),使數(shù)列是等比數(shù)列?若存在,求的值;若不存在,請說明理由;

(2)若是數(shù)列的前項(xiàng)和,求滿足的所有正整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)的定義域?yàn)?/span>,滿足對任意,,有,則稱型函數(shù);若函數(shù)的定義域?yàn)?/span>,滿足對任意恒成立,且對任意,,有,則稱為對數(shù)型函數(shù).

1)當(dāng)函數(shù)時,判斷是否為型函數(shù),并說明理由.

2)當(dāng)函數(shù)時,證明:是對數(shù)型函數(shù).

3)若函數(shù)型函數(shù),且滿足對任意,有,問是否為對數(shù)型函數(shù)?若是,加以證明;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=sinωx)(ω0,|φ|),xfx)的零點(diǎn),xyfx)圖象的對稱軸,且fx)在()上單調(diào),則ω的最大值為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某中學(xué)高三文科班學(xué)生共有800人參加了數(shù)學(xué)與地理的水平測試,學(xué)校決定利用隨機(jī)數(shù)表法從中抽取100人進(jìn)行成績抽樣調(diào)查,先將800人按001,002,…,800進(jìn)行編號.

(1)如果從第8行第7列的數(shù)開始向右讀,請你依次寫出最先檢查的3個人的編號;

(下面摘取了第7行到第9行)

(2)抽取的100人的數(shù)學(xué)與地理的水平測試成績?nèi)缦卤恚撼煽兎譃閮?yōu)秀、良好、及格三個等級;橫向,縱向分別表示地理成績與數(shù)學(xué)成績,例如:表中數(shù)學(xué)成績?yōu)榱己玫墓灿?/span>.

①若在該樣本中,數(shù)學(xué)成績優(yōu)秀率是,的值:

②在地理成績及格的學(xué)生中,已知,求數(shù)學(xué)成績優(yōu)秀的人數(shù)比及格的人數(shù)少的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,,,的中點(diǎn).

(1)證明:平面

(2)若點(diǎn)在棱上,且,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)滿足

(1)求函數(shù)的解析式;

(2)

若函數(shù)在上是單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;

求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面,,,,且,點(diǎn)在線段上.

1)求證:平面

2)若二面角的大小為,試確定點(diǎn)的位置.

查看答案和解析>>

同步練習(xí)冊答案