過拋物線x2=2y上兩點A(-1,)、B(2,2)分別作拋物線的切線,兩條切線交于點M.
(1)求證:∠BAM=∠BMA;
(2)記過點A、B且中心在坐標原點、對稱軸為坐標軸的雙曲線為C,F(xiàn)1、F2為C的兩個焦點,B1、B2為C的虛軸的兩個端點,過點B2作直線PQ分別交C的兩支于P、Q,當∈(0,4]時,求直線PQ的斜率k的取值范圍.
【答案】分析:(1)由y=x2,知y'=x,切于點A(-1,)的切線方程為y-=-(x+1),切于點B(2,2)的切線方程為y-2=2(x-2),聯(lián)立解得M(,-1),由|BA|=|BM|,能夠證明∠BAM=∠BMA.
(2)設雙曲線方程為mx2-ny2=1,由題意,知m-n=1且4m-4n=1,故m=,n=1,雙曲線方程為x2-y2=1.設B1(0,1),B2(0,-1),設P(x1,y1),Q(x2,y2),故=x1x2+1-(y1+y2)+y1y2∈(0,4],設直線PQ的方程為y=kx-1(k必存在),再由根的判別式和韋達定理能求出直線PQ的斜率k的取值范圍.
解答:解:(1)∵y=x2,
∴y'=x,
切于點A(-1,)的切線方程為y-=-(x+1),
切于點B(2,2)的切線方程為y-2=2(x-2),
聯(lián)立解得M(,-1),
∵|BA|=|BM|,
∴∠BAM=∠BMA.
(2)設雙曲線方程為mx2-ny2=1,
由題意,有m-n=1且4m-4n=1,
解得m=,n=1,
∴雙曲線方程為x2-y2=1,
不妨設B1(0,1),B2(0,-1),
設P(x1,y1),Q(x2,y2),
=(-x1,1-y1),=(-x2,1-y2),
=x1x2+1-(y1+y2)+y1y2∈(0,4].
設直線PQ的方程為y=kx-1(k必存在),
,
得(-k2)x2+2kx-2=0
△=4k2+8(-k2)>0
x1+x2=,x1x2=
=x1x2+1-(y1+y2)+y1y2
=x1x2+1-k(x1+x2)+2+k2x1x2-k(x1+x2)+1
將x1+x2=,x1x2=代入,
=
=
=
=∈(0,4],
即0<≤4,
,
由①得,或,
由②得k2≤1,或
故k2≤1,或
解得k∈(-∞,-)∪[-1,1]∪().
點評:本題考查直線與圓錐曲線的綜合應用,考查運算求解能力和論證推導能力,綜合性強,難度大,是高考的重點,易錯點是計算量大,容易失誤.解題時要認真審題,注意導數(shù)的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

過拋物線x2=-2y上一點P(2,-2),作傾斜角互補的弦PA、PB,則AB弦的斜率為
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•成都二模)過拋物線x2=2y上兩點A(-1,
1
2
)、B(2,2)分別作拋物線的切線,兩條切線交于點M.
(1)求證:∠BAM=∠BMA;
(2)記過點A、B且中心在坐標原點、對稱軸為坐標軸的雙曲線為C,F(xiàn)1、F2為C的兩個焦點,B1、B2為C的虛軸的兩個端點,過點B2作直線PQ分別交C的兩支于P、Q,當
PB1
QB1
∈(0,4]時,求直線PQ的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

過拋物線x2=2y上兩點A(-1,數(shù)學公式)、B(2,2)分別作拋物線的切線,兩條切線交于點M.
(1)求證:∠BAM=∠BMA;
(2)記過點A、B且中心在坐標原點、對稱軸為坐標軸的雙曲線為C,F(xiàn)1、F2為C的兩個焦點,B1、B2為C的虛軸的兩個端點,過點B2作直線PQ分別交C的兩支于P、Q,當數(shù)學公式∈(0,4]時,求直線PQ的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:成都二模 題型:解答題

過拋物線x2=2y上兩點A(-1,
1
2
)、B(2,2)分別作拋物線的切線,兩條切線交于點M.
(1)求證:∠BAM=∠BMA;
(2)記過點A、B且中心在坐標原點、對稱軸為坐標軸的雙曲線為C,F(xiàn)1、F2為C的兩個焦點,B1、B2為C的虛軸的兩個端點,過點B2作直線PQ分別交C的兩支于P、Q,當
PB1
QB1
∈(0,4]時,求直線PQ的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2008-2009學年重慶十一中高二(上)期末數(shù)學試卷(理科)(解析版) 題型:填空題

過拋物線x2=-2y上一點P(2,-2),作傾斜角互補的弦PA、PB,則AB弦的斜率為   

查看答案和解析>>

同步練習冊答案