已知,橢圓C過點A,兩個焦點為(-1,0),(1,0).
(1)求橢圓C的方程;
(2)E,F(xiàn)是橢圓C上的兩個動點,如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個定值.
【答案】分析:(Ⅰ)由題意,c=1,可設橢圓方程代入已知條件得,求出b,由此能夠求出橢圓方程.
(Ⅱ)設直線AE方程為:,代入,再點在橢圓上,結合直線的位置關系進行求解.
解答:解:(Ⅰ)由題意,c=1,
可設橢圓方程為,
解得b2=3,(舍去)
所以橢圓方程為
(Ⅱ)設直線AE方程為:,
代入
設E(xE,yE),F(xiàn)(xF,yF),
因為點在橢圓上,
所以
又直線AF的斜率與AE的斜率互為相反數(shù),
在上式中以-K代K,可得,
所以直線EF的斜率
即直線EF的斜率為定值,其值為
點評:本題綜合考查直線與橢圓的位置關系,解題時要認真審題,仔細解答,避免出錯.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知,橢圓C過點A(1,
32
)
,兩個焦點為(-1,0),(1,0).
(1)求橢圓C的方程;
(2)E,F(xiàn)是橢圓C上的兩個動點,如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

已知,橢圓C過點A,兩個焦點為(-1,0),(1,0)。

(1)       求橢圓C的方程;        

(2)       E,F是橢圓C上的兩個動點,如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個定值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

()已知,橢圓C過點A,兩個焦點為(-1,0),(1,0)。

(1)       求橢圓C的方程;

(2)       E,F是橢圓C上的兩個動點,如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個定值。

查看答案和解析>>

科目:高中數(shù)學 來源:遼寧省高考真題 題型:解答題

已知,橢圓C過點A (1,),兩個焦點為(-1,0),(1,0)。
(1)求橢圓C的方程;
(2)E,F(xiàn)是橢圓C上的兩個動點,如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個定值。

查看答案和解析>>

同步練習冊答案