【題目】某校從參加高三模擬考試的學(xué)生中隨機(jī)抽取60名學(xué)生,將其數(shù)學(xué)成績(jī)(均為整數(shù))分成六段[90,100),[100,110),…,[140,150)后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:

求分?jǐn)?shù)在[120,130)內(nèi)的頻率,并補(bǔ)全這個(gè)頻

率分布直方圖;

統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)

值作為代表,據(jù)此估計(jì)本次考試的平均分;

(3)用分層抽樣的方法在分?jǐn)?shù)段為[110,130)的學(xué)生中抽取一個(gè)容量為6的樣本,將該樣本看成一個(gè)總體,從中任取2個(gè),求至多有1人在分?jǐn)?shù)段[120,130)內(nèi)的概率.

【答案】(1)如解析所示;(2)121;(3)

【解析】試題分析:(1)頻率分布直方圖中,小矩形的面積等于這一組的頻率,而頻率的和等于1,可求出分?jǐn)?shù)在內(nèi)的頻率,即可求出矩形的高,畫出圖象即可;(2)同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表,將中點(diǎn)值與每一組的頻率相差再求出它們的和即可求出本次考試的平均分;(3)先計(jì)算分?jǐn)?shù)段的人數(shù),然后按照比例進(jìn)行抽取,設(shè)從樣本中任取2人,至多有1人在分?jǐn)?shù)段為事件,然后列出基本事件空間包含的基本事件,以及事件包含的基本事件,最后將包含事件的個(gè)數(shù)求出題目比值即可.

試題解析:(1)分?jǐn)?shù)在[120,130)內(nèi)的頻率為:1-(0.1+0.15+0.15+0.25+0.05)=1-0.7=0.3, ,補(bǔ)全后的直方圖如下:

(2)平均分為:95×0.1+105×0.15+115×0.15+125×0.3+135×0.25+145×0.05=121.

(3)由題意,[110,120)分?jǐn)?shù)段的人數(shù)為:60×0.15=9人,[120,130)分?jǐn)?shù)段的人數(shù)為:60×0.3=18人.

∵用分層抽樣的方法在分?jǐn)?shù)段為[110,130)的學(xué)生中抽取一個(gè)容量為6的樣本,

∴需在[110,120)分?jǐn)?shù)段內(nèi)抽取2人,并分別記為m,n

在[120,130)分?jǐn)?shù)段內(nèi)抽取4人并分別記為a,bc,d;

設(shè)“從樣本中任取2人,至多有1人在分?jǐn)?shù)段[120,130)內(nèi)”為事件A,則基本事件有:(mn),(m,a),(m,b),(mc),(m,d),(n,a),(n,b),(n,c),(nd),(ab),(a,c),(a,d),(bc),(bd),(cd)共15種.

事件A包含的基本事件有:(mn),(m,a),(m,b),(m,c),(md),(na),(nb),(n,c),(n,d)共9種,∴.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,已知,,則( )

A. 等腰直角三角形 B. 等邊三角形

C. 銳角非等邊三角形 D. 鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講
已知函數(shù)f(x)=log2(|x+1|+|x﹣2|﹣m).
(1)當(dāng)m=7時(shí),求函數(shù)f(x)的定義域;
(2)若關(guān)于x的不等式f(x)≥2的解集是R,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是邊長(zhǎng)為2的正方形,側(cè)面是等腰直角三角形,且,側(cè)面⊥底面.

(1)若分別為棱的中點(diǎn),求證:∥平面

(2)棱上是否存在一點(diǎn),使二面角角,若存在,求出的長(zhǎng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD= AD.E為棱AD的中點(diǎn),異面直線PA與CD所成的角為90°.

(1)在平面PAB內(nèi)找一點(diǎn)M,使得直線CM∥平面PBE,并說明理由;
(2)若二面角P﹣CD﹣A的大小為45°,求直線PA與平面PCE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為為參數(shù)).

(1)求曲線的直角坐標(biāo)方程;曲線的極坐標(biāo)方程。

(2)當(dāng)曲線與曲線有兩個(gè)公共點(diǎn)時(shí),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知邊長(zhǎng)為 的菱形ABCD中,∠BAD=60°,沿對(duì)角線BD折成二面角A﹣BD﹣C為120°的四面體ABCD,則四面體的外接球的表面積為(
A.25π
B.26π
C.27π
D.28π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象過點(diǎn),對(duì)任意滿足,且有最小值為

1)求的解析式;

2)求函數(shù)在區(qū)間[0,1]上的最小值,其中;

3)在區(qū)間[1,3]上,的圖象恒在函數(shù)的圖象上方,試確定實(shí)數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】12分)已知函數(shù)fx=

1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論.

2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案