(ii)當(dāng)滿足條件           ___________時(shí),有.(填所選條件的序號(hào))

(理)③⑤  (文)②⑤

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)如圖,四棱錐P—ABCD的底面是矩形,PA⊥面ABCD,PA=2,AB=8,BC=6,點(diǎn)E是PC的中點(diǎn),F(xiàn)在AD上且AF:FD=1:2.建立適當(dāng)坐標(biāo)系.

(1)求EF的長(zhǎng);
(2)證明:EF⊥PC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
如圖,四棱錐中,底面,四邊形中, ,, ,,E為中點(diǎn).
(1)求證:CD⊥面PAC;(2)求:異面直線BE與AC所成角的余弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

本小題滿分12分)

已知三棱錐P­ABC中,PA⊥平面ABC,AB⊥AC,PA=AC=AB,
N為AB上一點(diǎn),AB=4AN,M,S分別為PB,BC的中點(diǎn).
(I)證明:CM⊥SN;(II)求SN與平面CMN所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
正四棱柱ABCD—A1B1C1D1中,已知AB=2,E,F(xiàn)分別是D1B,AD的中點(diǎn),
(1)建立適當(dāng)?shù)淖鴺?biāo)系,求出E點(diǎn)的坐標(biāo);
(2)證明:EF是異面直線D1B與AD的公垂線;
(3)求二面角D1—BF—C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)如圖,直角梯形與等腰直角三角形所在的平面互相垂直.,,,

(1)求證:
(2)求直線與平面所成角的正弦值;
(3)線段上是否存在點(diǎn),使// 平面?若存在,求出;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四邊形中(圖1),的中點(diǎn),,,將(圖1)沿直線折起,使二面角(如圖2)
(1)求證:平面;
(2)求二面角A—DC—B的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)如圖在底面是矩形的四棱錐P-ABCD中,PA⊥底面ABCD, E、F分別是PC、PD的中點(diǎn),求證:(1)EF∥平面PAB;
(2)平面PAD⊥平面PDC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分10分)
如圖:是⊙的直徑,垂直于⊙所在的平面,是圓周上不同于的任意一點(diǎn),
(1)求證:平面.
(2)圖中有幾個(gè)直角三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案