如圖,某自來(lái)水公司要在公路兩側(cè)鋪設(shè)水管,公路為東西方向,在路北側(cè)沿直線(xiàn)鋪設(shè)線(xiàn)路l1,在路南側(cè)沿直線(xiàn)鋪設(shè)線(xiàn)路l2,現(xiàn)要在矩形區(qū)域ABCD內(nèi)沿直線(xiàn)將l1與l2接通.已知AB=60m,BC=80m,公路兩側(cè)鋪設(shè)水管的費(fèi)用為每米1萬(wàn)元,穿過(guò)公路的EF部分鋪設(shè)水管的費(fèi)用為每米2萬(wàn)元,設(shè)∠EFB=
π
2
-α,矩形區(qū)域內(nèi)的鋪設(shè)水管的總費(fèi)用為W.
(1)求W關(guān)于α的函數(shù)關(guān)系式;
(2)求W的最小值及相應(yīng)的角α.
考點(diǎn):三角形中的幾何計(jì)算
專(zhuān)題:解三角形
分析:(1)由題意求得EF=
AB
sin(
π
2
-α)
  
60
cosα
,再根據(jù)W=2EF得到W關(guān)于α的函數(shù)關(guān)系式.
(2)根據(jù)W=
120
cosα
,利用余弦函數(shù)的值域求得W取得最小值以及此時(shí)α的值.
解答: 解:(1)由題意可得,EF=
AB
sin(
π
2
-α)
=
AB
cosα
=
60
cosα
,W=2EF=
120
cosα

(2)由于W=
120
cosα
,故當(dāng)α=0時(shí),cosα最大,W取得最小值為120.
點(diǎn)評(píng):本題主要考查直角三角形中的邊角關(guān)系,誘導(dǎo)公式,求三角函數(shù)的最值,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-2ax-3在x∈[2,4]上最大值為5,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列五個(gè)命題:
①函數(shù)y=tanx的圖象關(guān)于點(diǎn)(kπ+
π
2
,0)(k∈Z)對(duì)稱(chēng);
②函數(shù)f(x)=tanx是最小正周期為π的周期函數(shù);
③函數(shù)y=cos2x+sinx的最小值為-1;
④設(shè)θ為第二象限的角,則tan
θ
2
>cos
θ
2
,且sin
θ
2
>cos
θ
2
;
⑤若θ第三象限角,則點(diǎn)P(sin(cosθ),cos(cosθ))在第二象限.
其中正確的命題序號(hào)是
 
..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(x+1)lnx.
(1)指出函數(shù)f(x)極值點(diǎn)的個(gè)數(shù),并給出證明;
(2)若關(guān)于x的不等式mf(x)>2(x-1)對(duì)于所有x∈(1,+∞)都成立,求實(shí)數(shù)m的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}滿(mǎn)足條件a1=1,an=an-1+(
1
3
n-1(n=2,3,…).
(1)求{an};
(2)求a1+a2+a3+…+an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=sin(2x-
π
6
)的一條對(duì)稱(chēng)軸方程是(  )
A、x=
π
12
B、x=
π
6
C、x=
12
D、x=
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC是邊長(zhǎng)為2的正三角形,則它的平面直觀圖△A′B′C′的面積為(  )
A、
3
4
B、
3
2
C、
6
4
D、
6
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某個(gè)幾何體的三視圖如圖所示,其中俯視圖為等邊三角形,則該幾何體的表面積是( 。
A、
3
B、6+
3
C、6+2
3
D、6+3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)f(x)=
x2
x-2
(x≠2)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案