【題目】已知正方形ABCD的邊長(zhǎng)為4,MAD的中點(diǎn),動(dòng)點(diǎn)N在正方形ABCD的內(nèi)部或其邊界移動(dòng),并且滿足,則的取值范圍是________

【答案】

【解析】

A為原點(diǎn)建立直角坐標(biāo)系,可得A(0,0),B(4,0),C(4,4),D(0,4),M(0,2),可得N滿足的方程x0),同時(shí)可得=,設(shè)z=,求出其取值范圍可得答案.

解:

如圖以A為原點(diǎn)建立直角坐標(biāo)系,可得A(0,0),B(4,0),C(4,4),D(0,4),M(0,2)

設(shè)N點(diǎn)坐標(biāo)Nxy),可得=(xy-2),=xy),由,可得N滿足的方程x0①,可得=(4-x,-y),=(4-x,4-y),可得==,將①代入②可得=,

即求z=的取值范圍,

可得(xy)滿足x0),由圖像可知當(dāng)N取(0,0)點(diǎn)的時(shí)候z最大,,當(dāng)直線z=與圓x0)相切時(shí)候,z取最小值,

設(shè)直線為y=-2x+b,則z=-2b+16,

聯(lián)立方程可得,可得,由其只有一個(gè)交點(diǎn)可得:

=0,即:,解得:b=b=b0,舍去),

z=-2b+16=14-2,即:,

可得的取值范圍:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)工廠在某年連續(xù)10個(gè)月每月產(chǎn)品的總成本y(萬(wàn)元)與該月產(chǎn)量x(萬(wàn)件)之間有如下一組數(shù)據(jù):

x

1.08

1.12

1.19

1.28

1.36

1.48

1.59

1.68

1.80

1.87

y

2.25

2.37

2.40

2.55

2.64

2.75

2.92

3.03

3.14

3.26

(1)通過(guò)畫(huà)散點(diǎn)圖,發(fā)現(xiàn)可用線性回歸模型擬合y與x的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說(shuō)明;

(2)①建立月總成本y與月產(chǎn)量x之間的回歸方程;

②通過(guò)建立的y關(guān)于x的回歸方程,估計(jì)某月產(chǎn)量為1.98萬(wàn)件時(shí),此時(shí)產(chǎn)品的總成本為多少萬(wàn)元?

(均精確到0.001)

附注:①參考數(shù)據(jù):,

②參考公式:相關(guān)系數(shù)

回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)利用周末組織教職員工進(jìn)行了一次秋季登山健身的活動(dòng),有Ⅳ人參加,現(xiàn)將所有參加者按年齡情況分為,,,,,等七組,其頻率分布直方圖如圖所示,已知這組的參加者是6人.

(1)根據(jù)此頻率分布直方圖求該校參加秋季登山活動(dòng)的教職工年齡的中位數(shù);

(2)已知這兩組各有2名數(shù)學(xué)教師,現(xiàn)從這兩個(gè)組中各選取2人擔(dān)任接待工作,設(shè)兩組的選擇互不影響,求兩組選出的人中恰有1名數(shù)學(xué)老師的概率;

(3)組織者從這組的參加者(其中共有4名女教師,其余全為男教師)中隨機(jī)選取3名擔(dān)任后勤保障工作,其中女教師的人數(shù)為,求的分布列和均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,上頂點(diǎn)為,直線的斜率為,且原點(diǎn)到直線的距離為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若不經(jīng)過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn),且與圓相切.試探究的周長(zhǎng)是否為定值,若是,求出定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為(t為參數(shù),0).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為

(Ⅰ)寫(xiě)出曲線C的直角坐標(biāo)方程;

(Ⅱ)若直線l與曲線C交于A,B兩點(diǎn),且AB的長(zhǎng)度為2,求直線l的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形中,,平面平面,四邊形是菱形,.

(1)求證:;

(2)求二面角的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C的焦點(diǎn)坐標(biāo)為,點(diǎn),過(guò)點(diǎn)P作直線l交拋物線CA,B兩點(diǎn),過(guò)AB分別作拋物線C的切線,兩切線交于點(diǎn)Q,則面積的最小值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】通過(guò)隨機(jī)詢問(wèn)名不同性別的大學(xué)生是否愛(ài)好某項(xiàng)運(yùn)動(dòng),得到如下的列聯(lián)表:

愛(ài)好

40

20

不愛(ài)好

20

30

算得,

參照附表,以下不正確的有(

附表:

0.050

0.010

0.001

3.841

6.635

10.828

A.在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)

B.在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)

C.以上的把握認(rèn)為愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)

D.以上的把握認(rèn)為愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐的底面是邊長(zhǎng)為的菱形,,點(diǎn)E是棱BC的中點(diǎn),,點(diǎn)P在平面ABCD的射影為O,F(xiàn)為棱PA上一點(diǎn).

1求證:平面平面BCF;

2平面PDE,,求四棱錐的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案