對(duì)任意x∈R,函數(shù)f(x)同時(shí)具有下列性質(zhì):①f(x+π)=f(x);②f(
π
3
+x)=f(
π
3
-x),則函數(shù)f(x)可以是( 。
A、f(x)=sin(
x
2
+
π
6
B、f(x)=sin(2x-
π
6
C、f(x)=cos(2x-
π
6
D、f(x)=cos(2x-
π
3
分析:分別判斷函數(shù)是否同時(shí)具備兩個(gè)性質(zhì)即可.
解答:解:性質(zhì)①說(shuō)明函數(shù)的周期是π,性質(zhì)②說(shuō)明函數(shù)關(guān)于x=
π
3
對(duì)稱(chēng).
A.函數(shù)的周期T=
1
2
=4π
,∴A不滿(mǎn)足條件.
B.函數(shù)的周期T=
2
,f(
π
3
)=sin(2×
π
3
-
π
6
)=sin
π
2
=1為函數(shù)的最大值,∴B滿(mǎn)足條件.
C.函數(shù)的周期T=
2
,f(
π
3
)=cos(2×
π
3
-
π
6
)=cos
π
2
=0不是函數(shù)的最大值,∴C不滿(mǎn)足條件.
D.函數(shù)的周期T=
2
,f(
π
3
)=cos(2×
π
3
-
π
3
)=cos
π
3
=
1
2
不是函數(shù)的最大值,∴D不滿(mǎn)足條件.
故滿(mǎn)足條件的函數(shù)是B.
故選:B.
點(diǎn)評(píng):本題主要考查三角函數(shù)的圖象和性質(zhì),要求熟練掌握三角函數(shù)的周期公式以及三角函數(shù)的對(duì)稱(chēng)性問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•宜春模擬)對(duì)任意x∈R,函數(shù)f(x)的導(dǎo)數(shù)存在,若f′(x)>f(x)且 a>0,則以下正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•東城區(qū)二模)對(duì)任意x∈R,函數(shù)f(x)滿(mǎn)足f(x+1)=
f(x)-[f(x)]2
+
1
2
,設(shè)an=[f(n)]2-f(n),數(shù)列{an}的前15項(xiàng)的和為-
31
16
,則f(15)=
3
4
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)任意X∈R,函數(shù)f(x)的導(dǎo)數(shù)存在,若f′(x)>f(x),且a>0,則下列結(jié)論正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•無(wú)為縣模擬)對(duì)任意x∈R,函數(shù)f(x)=ax3+ax2+7x不存在極值點(diǎn)的充要條件是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)任意x∈R,函數(shù)f(x)同時(shí)具有下列性質(zhì):①f(x+π)=f(x);②函數(shù)f(x)的一條對(duì)稱(chēng)軸是x=
π
3
,則函數(shù)f(x)可以是( 。
A、f(x)=sin(
x
2
+
π
6
B、f(x)=sin(2x-
π
6
C、f(x)=cos(2x-
π
6
D、f(x)=cos(2x-
π
3

查看答案和解析>>

同步練習(xí)冊(cè)答案