【題目】已知函數(shù)的圖象在軸右側(cè)的第一個最高點和第一個最低點的坐標(biāo)分別為和.若將函數(shù)的圖象向左平移個單位長度后得到的圖象關(guān)于原點對稱.
(1)求函數(shù)的解析式;
(2)若函數(shù)的周期為,當(dāng)時,方程恰有兩個不同的解,求實數(shù)的取值范圍.
【答案】(1);(2)
【解析】
(1)由題意可知函數(shù)的周期,且,再結(jié)合函數(shù)圖像的平移變換后圖像關(guān)于原點對稱,可得,結(jié)合,運算可得函數(shù)解析式;
(2)由(1)可得,令,當(dāng)在上有兩個不同的解,則,又,即可得實數(shù)的范圍.
(1)由題意可知函數(shù)的周期,且,所以,故.將函數(shù)的圖象向左平移個單位長度后得到的圖象對應(yīng)的函數(shù)解析式為,因為函數(shù)的圖象關(guān)于原點對稱,所以,即.
又,所以,故.
(2)由(1)得函數(shù),其周期為,
又,所以.令,因為,所以,
若在上有兩個不同的解,則,
所以當(dāng)時,方程在上恰有兩個不同的解,即實數(shù)的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是橢圓上的兩點,已知向量,,若且橢圓的離心率,短軸長為2,為坐標(biāo)原點.
(1)求橢圓的方程;
(2)若直線過橢圓的焦點(為半焦距),求直線的斜率的值;
(3)試問:的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)),以為極點,軸非負半軸為極軸建立極坐標(biāo)系. 直線的極坐標(biāo)方程是.
(Ⅰ)求圓的極坐標(biāo)方程和直線的直角坐標(biāo)方程;
(Ⅱ)射線與圓的交點為,與直線的交點為,求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究機構(gòu)對高三學(xué)生的記憶力和判斷力進行統(tǒng)計分析,得下表數(shù)據(jù):
6 | 8 | 10 | 12 | |
2 | 3 | 5 | 6 |
(1)請在圖中畫出上表數(shù)據(jù)的散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(3)試根據(jù)(2)求出的線性回歸方程,預(yù)測記憶力為9的同學(xué)的判斷力.
相關(guān)公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是邊長為的菱形,,,為的中點,為的中點,點在線段上,且.
(1)求證:平面;
(2)若平面底面ABCD,且,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“克拉茨猜想”又稱“猜想”,是德國數(shù)學(xué)家洛薩克拉茨在1950年世界數(shù)學(xué)家大會上公布的一個猜想:任給一個正整數(shù),如果是偶數(shù),就將它減半;如果為奇數(shù)就將它乘3加1,不斷重復(fù)這樣的運算,經(jīng)過有限步后,最終都能夠得到1.己知正整數(shù)經(jīng)過6次運算后得到1,則的值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠,兩條相互獨立的生產(chǎn)線生產(chǎn)同款產(chǎn)品,在產(chǎn)量一樣的情況下通過日常監(jiān)控得知,生產(chǎn)線生產(chǎn)的產(chǎn)品為合格品的概率分別為和.
(1)從,生產(chǎn)線上各抽檢一件產(chǎn)品,若使得至少有一件合格的概率不低于,求的最小值.
(2)假設(shè)不合格的產(chǎn)品均可進行返工修復(fù)為合格品,以(1)中確定的作為的值.
①已知,生產(chǎn)線的不合格產(chǎn)品返工后每件產(chǎn)品可分別挽回損失元和元。若從兩條生產(chǎn)線上各隨機抽檢件產(chǎn)品,以挽回損失的平均數(shù)為判斷依據(jù),估計哪條生產(chǎn)線挽回的損失較多?
②若最終的合格品(包括返工修復(fù)后的合格品)按照一、二、三等級分類后,每件分別獲利元、元、元,現(xiàn)從,生產(chǎn)線的最終合格品中各隨機抽取件進行檢測,結(jié)果統(tǒng)計如下圖;用樣本的頻率分布估計總體分布,記該工廠生產(chǎn)一件產(chǎn)品的利潤為,求的分布列并估算該廠產(chǎn)量件時利潤的期望值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在區(qū)間上的函數(shù)y=f(x)的圖象關(guān)于直線x=-對稱,當(dāng)x∈時,函數(shù)f(x)=Asin(ωx+φ)的圖象如圖所示.
(1)求函數(shù)y=f(x)在上的表達式;
(2)求方程f(x)=的解.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com