(本小題滿分12分) 已知為實(shí)數(shù),,
(Ⅰ)若a=2,求的單調(diào)遞增區(qū)間;
(Ⅱ)若,求在[-2,2] 上的最大值和最小值。

(Ⅰ),(Ⅱ)最大值為最小值為

解析試題分析:(Ⅰ)由,得
所以當(dāng)a=2時(shí)f(x)的單調(diào)遞增區(qū)間為 (6分)
(Ⅱ)由原式得
 得,此時(shí)有.
或x="-1" , 又
所以f(x)在[-2,2]上的最大值為最小值為      (12分)
考點(diǎn):函數(shù)的單調(diào)性和最值
點(diǎn)評(píng):利用函數(shù)的導(dǎo)數(shù)可以求單調(diào)區(qū)間,極值,最值等問(wèn)題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù).
(Ⅰ)若,求的最小值;
(Ⅱ)若,討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)已知函數(shù),.
(Ⅰ)若,求函數(shù)的極值;
(Ⅱ)設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若在區(qū)間上不存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分13分) 已知函數(shù),函數(shù)
(I)當(dāng)時(shí),求函數(shù)的表達(dá)式;
(II)若,且函數(shù)上的最小值是2 ,求的值;
(III)對(duì)于(II)中所求的a值,若函數(shù),恰有三個(gè)零點(diǎn),求b的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知函數(shù)
(1)若的極值點(diǎn),求上的最大值
(2)若函數(shù)是R上的單調(diào)遞增函數(shù),求實(shí)數(shù)的的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知:,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是實(shí)數(shù),函數(shù)
(1)若,求的值及曲線在點(diǎn)處的切線方程;
(2)求在區(qū)間上的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題14分)
設(shè)函數(shù)
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)若關(guān)于的方程在區(qū)間內(nèi)恰有兩個(gè)相異的實(shí)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),且函數(shù)處都取得極值。
(1)求實(shí)數(shù)的值;
(2)求函數(shù)的極值;
(3)若對(duì)任意,恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案