5310被8除余數(shù)是
 
考點(diǎn):同余與mod
專題:計(jì)算題,規(guī)律型
分析:由5310=(56-3)10,轉(zhuǎn)化成二項(xiàng)式問題,即可得到結(jié)論.
解答: 解:由5310=(56-3)10=
C
0
10
•5610-
C
1
10
•569•3+…+
C
10
10
310
最后一項(xiàng)為310,其余各項(xiàng)均含因數(shù)8,
∵310=95=(8+1)5=
C
0
5
•85+
C
1
5
•84+…+
C
5
5

最后一項(xiàng)為1,其余各項(xiàng)均含因數(shù)8,
故5310被8除的余數(shù)是1,
故答案為:1
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,an=
Sn
n
+2 (n-1)(n∈N*).
(1)求證:數(shù)列{an}為等差數(shù)列,并分別寫出an和Sn關(guān)于n的表達(dá)式;
(2)是否存在自然數(shù)n,使得S1+
S2
2
+
S3
3
+…+
Sn
n
-(n-1)2=2013?若存在,求出n的值;若不存在,請(qǐng)說明理由.
(3)設(shè)Cn=
2
n(an+7)
(n∈{N*}),Tn=c1+c2+c3+…+cn(n∈N*),是否存在最大的整數(shù)m,使得對(duì)任意n∈N*均有Tn
m
32
成立?若存在,求出m的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)過點(diǎn)A(2,3),且離心率e=
1
2

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)是否存在過點(diǎn)B(0,-4)的直線l交橢圓于不同的兩點(diǎn)M、N,且滿足
OM
ON
=
16
7
(其中點(diǎn)O為坐標(biāo)原點(diǎn)),若存在,求出直線l的方程,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-2:矩陣與變換
若二階矩陣M滿足M
12
34
=
710
46

(Ⅰ)求二階矩陣M;
(Ⅱ)把矩陣M所對(duì)應(yīng)的變換作用在曲線3x2+8xy+6y2=1上,求所得曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-
1
2
(a+1)x2+ax+1
,a∈R.若函數(shù)f(x)在區(qū)間(-1,1)內(nèi)是減函數(shù),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}是公差為-2的等差數(shù)列,如果a1+a4+a7+…+a97=50,則a3+a6+a9…+a99=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓和雙曲線還可以由下面的方式定義:平面內(nèi)到定點(diǎn)的距離和定直線(定點(diǎn)在定直線外)的距離的比為常數(shù)的點(diǎn)的集合.這里定點(diǎn)就是焦點(diǎn),定直線就是與焦點(diǎn)相對(duì)應(yīng)的準(zhǔn)線,比如橢圓
x2
a2
+
y2
b2
=1(a>0,b>0)的準(zhǔn)線方程為x=±
a2
c
(c為半焦距),雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的準(zhǔn)線方程為x=±
a2
c
(c為半焦距)這里的常數(shù)就是其離心率e.現(xiàn)在設(shè)橢圓
x2
a2
+
y2
b2
=1(a>0,b>0)的左焦點(diǎn)為F,過F的直線與橢圓相交于A、B兩點(diǎn),那么以弦AB為直徑的圓與左準(zhǔn)線的位置關(guān)系應(yīng)該是
 
,那么類比到雙曲線中結(jié)論是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在斜二測(cè)畫法中,一個(gè)平面圖形的直觀圖是邊長(zhǎng)為2的正三角形,則其面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于等差數(shù)列{an}有如下命題:“若{an}是等差數(shù)列,a1=0,s,t是互不相等的正整數(shù),則有(s-1)at=(t-1)as”.類比此命題,給出等比數(shù)列{bn}相應(yīng)的一個(gè)正確命題:“
 
”.

查看答案和解析>>

同步練習(xí)冊(cè)答案