過雙曲線的mx2-y2=m(m>1)的左焦點作直線l交雙曲線于P、Q兩點,若|PQ|=2m,則這樣的直線共有______條.
將雙曲線化為標準形式可得:x2-
y2
m
=1,則a=1,b=
m
;
若PQ只與雙曲線右支相交時,|PQ|的最小距離是通徑,長度為
2b2
a
=2m,
此時只有一條直線符合條件;
若PQ與雙曲線的兩支都相交時,此時|PQ|的最小距離是實軸兩頂點的距離,長度為2a=2,距離無最大值,
結合雙曲線的對稱性,可得此時有2條直線符合條件;
綜合可得,有3條直線符合條件;
故答案為3.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

已知M(-2,0),N(2,0),|PM|-|PN|=2,則動點P的軌跡是( 。
A.雙曲線B.雙曲線左支C.雙曲線右支D.一條射線

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓
x2
34
+
y2
n2
=1
(n>0)和雙曲線
x2
n2
-
y2
16
=1
(n>0)有相同的焦點,則實數(shù)n的值是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設k是實數(shù),若方程
x2
k-4
-
y2
k+4
=1
表示的曲線是雙曲線,則k的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知雙曲線
x2
a2
-
y2
b2
=1
的右焦點到右準線的距離等于焦距的
1
3
,則離心率為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

雙曲線
x2
36
-
y2
m
=1
的焦距為18,則雙曲線的漸近線方程為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點分別F1、F2,O為雙曲線的中心,P是雙曲線右支上異于頂點的任一點,△PF1F2的內切圓的圓心為I,且⊙I與x軸相切于點A,過F2作直線PI的垂線,垂足為B,若e為雙曲線的離心率,下面八個命題:
①△PF1F2的內切圓的圓心在直線x=b上;
②△PF1F2的內切圓的圓心在直線x=a上;
③△PF1F2的內切圓的圓心在直線OP上;
④△PF1F2的內切圓必通過點(a,0);
⑤|OB|=e|OA|;
⑥|OB|=|OA|;
⑦|OA|=e|OB|;
⑧|OA|與|OB|關系不確定.
其中正確的命題的代號是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知對稱軸為坐標軸的雙曲線的漸近線的漸近線方程為y=±
b
a
x(a>0,b>0),若雙曲線上有一點M(x0,y0),使的a|y0|>b|x0|,則雙曲線的焦點( 。
A.在x軸上
B.在y軸上
C.黨a>b時在x軸上,當a>b時在y軸上
D.不能確定在x軸上還是在y軸上

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過點(0,4)的直線與雙曲線
x2
4
-
y2
12
=1
的右支交于A,B兩點,則直線AB的斜率k的取值范圍是( 。
A.(
3
,
7
)
B.(-
7
,-
3
)
C.(
3
,+∞)∪(-∞,-
3
)
D.(-
7
,-
3
)∪(
3
,
7
)

查看答案和解析>>

同步練習冊答案