已知f(cosx)=cos3x,則f(sinx)等于( 。
A、-sin3xB、-cos3xC、cos3xD、sin3x
分析:法一:令t=cosx,由3倍角公式求出f(t)=4t3-3t,換元可得 f(sinx)的解析式.
法二:把sinx 用cos(
π
2
-x)來(lái)表示,利用已知的條件f(cosx)=cos3x得出f(sinx)的解析式.
解答:解:法一:令t=cosx,
∵cos3x=4cos3x-3cosx,f(cosx)=cos3x=4cos3x-3cosx,
∴f(t)=4t3-3t,
∴f(sinx)=4sin3x-3sinx=-sin3x,
故選A.
法二:∵f(cosx)=cos3x,
∴f(sinx)=f(cos(
π
2
-x))=cos3(
π
2
-x)
=cos(
2
-3x)=-sin3x,
故選A.
點(diǎn)評(píng):本題考查3倍角的余弦、正弦公式的應(yīng)用,以及用換元法求函數(shù)解析式的方法,此題也可用誘導(dǎo)公式求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(cosx)=cos5x,則f(sinx)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
-cosx  ,x>0
f(x+π)+1,x≤0
,則f(
3
)+f(-
3
)
的值等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(cosx)=sinx,設(shè)x是第一象限角,則f(sinx)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(cosx)=sin2x,則f(sin30°)的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=cosx  (x∈[-
π
2
,0])
,記p=
1
2
[f-1(x1)+f-1(x2)],q=f-1(
x1+x2
2
)
,其中x1,x2∈[0,1],且x1≠x2,則 ( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案