【題目】設(shè)函數(shù)f(x)=|xa|,a<0.

(1)證明:f(x)+f≥2;

(2)若不等式f(x)+f(2x)<的解集非空,求a的取值范圍.

【答案】(1)見解析(2)(-1,0)

【解析】試題分析:(1)運用絕對值不等式的性質(zhì)和基本不等式,即可得證;

(2)通過對x的范圍的分類討論去掉絕對值符號,轉(zhuǎn)化為一次不等式,求得(f(x)+f(2x))min即可.

試題解析:

(1)證明:函數(shù)f(x)=|xa|,a<0,

設(shè)f(x)+f=|xa|+

=|xa|+

=|x|+≥2

=2(當(dāng)且僅當(dāng)|x|=1時取等號).

(2)f(x)+f(2x)=|xa|+|2xa|,a<0.

當(dāng)xa時,f(x)+f(2x)=axa-2x=2a-3x

f(x)+f(2x)≥-a;

當(dāng)a<x<時,f(x)+f(2x)=xaa-2x=-x,

則-<f(x)+f(2x)<-a;

當(dāng)x時,f(x)+f(2x)=xa+2xa=3x-2a

f(x)+f(2x)≥-,

f(x)的值域為,若不等式f(x)+f(2x)<的解集非空,則需>-,

解得a>-1,又a<0,所以-1<a<0,

a的取值范圍是(-1,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】意大利數(shù)學(xué)家列昂納多·斐波那契是第一個研究了印度和阿拉伯?dāng)?shù)學(xué)理論的歐洲人,斐波那契數(shù)列被譽(yù)為是最美的數(shù)列,斐波那契數(shù)列滿足:,.若將數(shù)列的每一項按照下圖方法放進(jìn)格子里,每一小格子的邊長為1,記前項所占的格子的面積之和為,每段螺旋線與其所在的正方形所圍成的扇形面積為,則下列結(jié)論正確的是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求上的最小值;

2)若關(guān)于的不等式只有兩個整數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋子中裝有除顏色外其他均相同的編號為a,b的兩個黑球和編號為c,d,e的三個紅球,從中任意摸出兩個球.

1)求恰好摸出1個黑球和1個紅球的概率:

2)求至少摸出1個黑球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x+1+|3-x|,x≥-1.

(1)求不等式f(x)≤6的解集;

(2)若f(x)的最小值為n,正數(shù)a,b滿足2naba+2b,求2ab的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個焦點分別為,,離心率為,且橢圓四個頂點構(gòu)成的菱形面積為

(1)求橢圓C的方程;

(2)若直線l :y=x+m與橢圓C交于M,N兩點,以MN為底邊作等腰三角形,頂點為P(3,-2),求m的值及△PMN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖是某市111日至14日的空氣質(zhì)量指數(shù)趨勢圖,空氣質(zhì)量指數(shù)(AQI)小于100表示空氣質(zhì)量優(yōu)良空氣質(zhì)量指數(shù)大于200表示空氣重度污染,某人隨機(jī)選擇111日至1112日中的某一天到達(dá)該市并停留3天.

(1)求此人到達(dá)當(dāng)日空氣重度污染的概率;

(2)設(shè)X是此人停留期間空氣重度污染的天數(shù),X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 設(shè)函數(shù)

1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

2)當(dāng)時,曲線有兩條公切線,求實數(shù)的取值范圍;

3)若恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中),.它的最小正周期為,且的最大值為2

1)求的解析式;

2)寫出函數(shù)的單調(diào)遞減區(qū)間、對稱軸和對稱中心.

查看答案和解析>>

同步練習(xí)冊答案