知橢圓的離心率為,橢圓短軸的一個端點與兩個焦點構(gòu)成的三角形的面積為,直線l的方程為:
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線l與橢圓相交于、兩點
①若線段中點的橫坐標為,求斜率的值;
②已知點,求證:為定值
(Ⅰ);(Ⅱ)(1),(2)定值為
【解析】
試題分析:(1) 橢圓短軸的一個端點與兩個焦點構(gòu)成的三角形,可以看作是以長為底邊,高為的等腰三角形,故面積為,從而可以列出等式,又由離心率得及,可解出,從而求出橢圓的方程 (2)直線和橢圓相交,其方程聯(lián)立方程組,消去,可得關(guān)于的二次方程,利用韋達定理可得,這就是相交弦的中點的橫坐標,從而求出,把用坐標表示出來,借助(1)中的二次方程得出的代入,就可證明出定值
試題解析:(Ⅰ)因為滿足,, 2分
,解得,,
則橢圓方程為 4分
(Ⅱ)(1)設(shè),將代入并化簡得
6分
,
則是上述方程的解
, 7分
因為的中點的橫坐標為,所以,解得 9分
(2)由(1),,
,為定值
考點:(Ⅰ)橢圓的標準方程與幾何性質(zhì);(Ⅱ)直線與橢圓的位置關(guān)系問題
科目:高中數(shù)學 來源: 題型:
x2 |
a2 |
y2 |
b2 |
1 |
2 |
y2 |
2 |
OA |
OB |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
x2 |
a2 |
y2 |
b2 |
| ||
2 |
| ||
2 |
x0 |
a |
y0 |
b |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分13分)
如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的
左、右焦點為頂點的三角形的周長為.一等軸雙曲線的頂點是該橢
圓的焦點,設(shè)為該雙曲線上異于頂點的任一點,直線和與橢圓的交點
分別 為和
(Ⅰ)求橢圓和雙曲線的標準方程;
(Ⅱ)設(shè)直線、的斜率分別為、,證明;
(Ⅲ)是否存在常數(shù),使得恒成立?
若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆江西省高三第四次月考理科數(shù)學試卷(解析版) 題型:填空題
已知橢圓的左焦點,為坐標原點,點在橢圓上,點在橢
圓的右準線上,若,則橢圓的離心率為 .
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年重慶市高三下學期2月月考文科數(shù)學 題型:選擇題
已知是橢圓上的點,以為圓心的圓與軸相切于橢
圓的焦點,圓與軸相交于兩點.若為銳角三角形,則橢圓的離心率
的取值范圍為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com