3.作出下列函數(shù)的圖象,并回答相關(guān)問題.
(1)在如圖1中作出f(x)=2|x|的圖象,奇偶性:偶函數(shù);值域:[1,+∞);單調(diào)性:在(-∞,0]上減,在[0,+∞)上增.
(2)在如圖2中作出f(x)=|log2x|的圖象.奇偶性:非奇非偶函數(shù);值域:[0,+∞);單調(diào)性:在(0,1]上減,在[1,+∞)上增.

分析 分別作出函數(shù)的圖象,由圖象可知答案.

解答 解:(1)圖象為

由圖象可得,函數(shù)為偶函數(shù),值域為[1,+∞);在(-∞,0]上減,在[0,+∞)上增.  
(2)圖象為

函數(shù)非奇非偶函數(shù);值域為[0,+∞);在(0,1]上減,在[1,+∞)上增.
故答案為:(1)偶函數(shù),[1,+∞);在(-∞,0]上減,在[0,+∞)上增,
(2)非奇非偶函數(shù);[0,+∞);在(0,1]上減,在[1,+∞)上增

點評 本題考查了函數(shù)圖象的畫法和識別,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.由拋物線y=x2-1,直線x=0,x=2及x軸圍成的圖形面積為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖,邊長為2的正方形ABCD中,點E、F分別是邊AB、BC的中點,現(xiàn)將△AED,△EBF,△FCD分別沿DE、EF、FD折起,使A、B、C三點重合于點M,則三棱錐M-DEF的外接球的體積為( 。
A.B.C.$\sqrt{6}$πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知實系數(shù)方程x2+ax+2b=0的兩根x1,x2滿足0<x1<1<x2<2,則a2+b2的取值范圍是(1,10).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知$\overrightarrow{e_1}$、$\overrightarrow{e_2}$是夾角為60°的兩個單位向量,$\overrightarrow a=3\overrightarrow{e_1}-2\overrightarrow{e_2}$,$\overrightarrow b=2\overrightarrow{e_1}-3\overrightarrow{e_2}$,求:
(Ⅰ) $\overrightarrow a•\overrightarrow b$;
(Ⅱ)|$\overrightarrow a+\overrightarrow b$|與|$\overrightarrow a-\overrightarrow b$|;
(Ⅲ)$\overrightarrow a+\overrightarrow b$與$\overrightarrow a-\overrightarrow b$的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,(a>b>0)$的左、右焦點分別為F1,F(xiàn)2,其左準(zhǔn)線為l0:x=-4,左頂點A,上頂點為B,且△BF1F2是等邊三角形
(1)求橢圓C的方程
(2)過F1任意作一條直線l交橢圓C與M、N(均不是橢圓的頂點),設(shè)直線AM交l0于P,直線AN交l0于Q,試問判斷$\overrightarrow{{F}_{1}P}$•$\overrightarrow{{F}_{1}Q}$是否為定值,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.下列對應(yīng)關(guān)系是集合B上的映射的是②
①A=Z,B=N+,對應(yīng)關(guān)系是f:對集合A中的元素取絕對值與B中的元素相對應(yīng)
②A={三角形},B=R,對應(yīng)關(guān)系是f:對集合A中的三角形求面積與集合B中的元素對應(yīng)
③A=R+,B=R,對應(yīng)關(guān)系是f:對集合A中的元素取平方根與B中的元素對應(yīng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.f(x)=ax3-6ax2+b,x∈[-1,2]的最大值為3,最小值為-29,則a+b的值為5或-31.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=2x+3x-2在區(qū)間(0,1)內(nèi)的零點個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案