【題目】設(shè)、、表示不同的直線,、、表示不同的平面,給出下列個(gè)命題:其中命題正確的個(gè)數(shù)是( )
①若,且,則;
②若,且,則;
③若,,,則;
④ 若,,,且,則.
A.B.C.D.
【答案】B
【解析】
①根據(jù)兩平行線中的一條垂直于一個(gè)平面,則另一條也垂直于這個(gè)平面,可判斷①的正誤;
②根據(jù)直線與平面平行的判定定理,可判斷②的正誤;
③根據(jù)空間中直線與平面的位置關(guān)系,可判斷③的正誤;
④根據(jù)空間中直線與平面平行的性質(zhì)定理,可判斷④的正誤.
對(duì)于命題①,當(dāng),且,則,命題①正確;
對(duì)于命題②,當(dāng),且,則或,命題②錯(cuò)誤;
對(duì)于命題③,當(dāng),,時(shí),或、、三條直線交于一點(diǎn),命題③錯(cuò)誤;
對(duì)于命題④,,,,,由直線與平面平行的性質(zhì)定理可得,同理可得,由平行關(guān)系的傳遞性可知,命題④正確.
因此,正確的命題為①④.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近期,某公交公司與銀行開(kāi)展云閃付乘車(chē)支付活動(dòng),吸引了眾多乘客使用這種支付方式.某線路公交車(chē)準(zhǔn)備用20天時(shí)間開(kāi)展推廣活動(dòng),他們組織有關(guān)工作人員,對(duì)活動(dòng)的前七天使用云閃付支付的人次數(shù)據(jù)做了初步處理,設(shè)第x天使用云閃付支付的人次為y,得到如圖所示的散點(diǎn)圖.
由統(tǒng)計(jì)圖表可知,可用函數(shù)y=abx擬合y與x的關(guān)系
(1)求y關(guān)于x的回歸方程;
(2)預(yù)測(cè)推廣期內(nèi)第幾天起使用云閃付支付的人次將超過(guò)10000人次.
附:①參考數(shù)據(jù)
xi2 | xiyi | xivi | |||
4 | 360 | 2.30 | 140 | 14710 | 71.40 |
表中vi=lgyi,lgyi
②參考公式:對(duì)于一組數(shù)據(jù)(u1,v1),(u2,v2)…,(un,vn),其回歸直線v=α+βu的斜率和截距的最小二乘估計(jì)分別為β,α.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,摩天輪的半徑為50m,圓心O距地面的高度為65m.已知摩天輪按逆時(shí)針?lè)较騽蛩俎D(zhuǎn)動(dòng),每30min轉(zhuǎn)動(dòng)一圈.游客在摩天輪的艙位轉(zhuǎn)到距離地面最近的位置進(jìn)艙.
(1)游客進(jìn)入摩天輪的艙位,開(kāi)始轉(zhuǎn)動(dòng)tmin后,他距離地面的高度為h,求h關(guān)于t的函數(shù)解析式;
(2)已知在距離地面超過(guò)40m的高度,游客可以觀看到游樂(lè)場(chǎng)全景,那么在摩天輪轉(zhuǎn)動(dòng)一圈的過(guò)程中,游客可以觀看到游樂(lè)場(chǎng)全景的時(shí)間是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙、丁四位同學(xué)一起去向老師詢(xún)問(wèn)成語(yǔ)競(jìng)賽的成績(jī),老師說(shuō):“你們四人中有位優(yōu)秀,位良好,我現(xiàn)在給甲看乙、丙的成績(jī),給乙看丙的成績(jī),給丁看甲的成績(jī).”看后甲對(duì)大家說(shuō):“我還是不知道我的成績(jī).”根據(jù)以上信息,則( )
A.乙可以知道兩人的成績(jī)B.丁可能知道兩人的成績(jī)
C.乙、丁可以知道自己的成績(jī)D.乙、丁可以知道對(duì)方的成績(jī)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)設(shè),當(dāng)時(shí),對(duì)任意,存在,使,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓上的點(diǎn).
(1)求證:平面PAC⊥平面PBC;
(2)若AB=2,AC=1,PA=1,求二面角C-PB-A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
(1)求的單調(diào)區(qū)間;
(2)設(shè),為函數(shù)的兩個(gè)零點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>,值域是.
(Ⅰ)求證: ;
(Ⅱ)求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com