(12分)已知函數(shù)f(x)=x3+mx2+nx-2的圖象過(guò)點(diǎn)(-1,-6),且函數(shù)g(x)=+6x的圖象關(guān)于y軸對(duì)稱.

(1)求m、n的值及函數(shù)y=f(x)的單調(diào)區(qū)間;(6分)

(2)若a>0,求函數(shù)y=f(x)在區(qū)間(a-1,a+1)內(nèi)的極值.(6分)

 

【答案】

(1) f(x)的單調(diào)遞減區(qū)間是(0,2).

(2)當(dāng)0<a<1時(shí),f(x)有極大值-2,無(wú)極小值;

當(dāng)1<a<3時(shí),f(x)有極小值-6,無(wú)極大值;

當(dāng)a=1或a≥3時(shí),f(x)無(wú)極值.

【解析】(Ⅰ)利用條件的到兩個(gè)關(guān)于m、n的方程,求出m、n的值,再找函數(shù)y=f(x)的導(dǎo)函數(shù)大于0和小于0對(duì)應(yīng)的區(qū)間即可.(Ⅱ)利用(Ⅰ)的結(jié)論,分情況討論區(qū)間(a-1,a+1)和單調(diào)區(qū)間的位置關(guān)系再得結(jié)論.

(1)由函數(shù)f(x)的圖象過(guò)點(diǎn)(-1,-6),得m-n=-3.①…

由f(x)=x3+mx2+nx-2,得=3x2+2mx+n,………………2分

則g(x)=+6x=3x2+(2m+6)x+n.

而g(x)的圖象關(guān)于y軸對(duì)稱,所以-=0,解得 m=-3.

代入①得n=0.

于是=3x2-6x=3x(x-2).………………………4分

>0得x>2或x<0,

故f(x)的單調(diào)遞增區(qū)間是(-∞,0),(2,+∞);………………………5分

<0,得0<x<2,

故f(x)的單調(diào)遞減區(qū)間是(0,2).………………………6分

(2)由(1)得=3x(x-2),令=0得x=0或x=2. ………………7分

當(dāng)x變化時(shí),,f(x)的變化情況如下表:

 

x

(-∞,0)

0

(0,2)

2

(2,+∞)

0

0

f(x)

增函數(shù)?

極大值

減函數(shù)

極小值

增函數(shù)?

…………………………………9分

由此可得:當(dāng)0<a<1時(shí),f(x)在(a-1,a+1)內(nèi)有極大值f(0)=-2,無(wú)極小值;

當(dāng)a=1時(shí),f(x)在 (a-1,a+1)內(nèi)無(wú)極值;

當(dāng)1<a<3時(shí),f(x)在(a-1,a+1)內(nèi)有極小值f(2)=-6,無(wú)極大值;

當(dāng)a≥3時(shí),f(x)在(a-1,a+1)內(nèi)無(wú)極值.

綜上得,當(dāng)0<a<1時(shí),f(x)有極大值-2,無(wú)極小值;

當(dāng)1<a<3時(shí),f(x)有極小值-6,無(wú)極大值;

當(dāng)a=1或a≥3時(shí),f(x)無(wú)極值.………………………………12分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年安徽省蚌埠市懷遠(yuǎn)縣包集中學(xué)高三(下)第七次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年河南省高三12月月考理科數(shù)學(xué)卷 題型:解答題

(本小題滿分12分)

已知函數(shù)f(x)=(x∈R),P1(x1,y1),P2(x2,y2)是函數(shù)y=f(x)圖像上兩點(diǎn),且線段P1P2中點(diǎn)P的橫坐標(biāo)為。

(1)求證P的縱坐標(biāo)為定值;    (4分)

(2)若數(shù)列{}的通項(xiàng)公式為=f()(m∈N,n=1,2,3,…,m),求數(shù)列{}的前m項(xiàng)和;     (5分)

(3)若m∈N時(shí),不等式橫成立,求實(shí)數(shù)a的取值范圍。(3分)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012年山東省濟(jì)寧市高二上學(xué)期期中考試文科數(shù)學(xué) 題型:解答題

(本小題滿分12分)

    已知函數(shù)f()=,當(dāng)∈(-2,6)時(shí),其值為正,而當(dāng)∈(-∞,-2)∪(6,+∞)時(shí),其值為負(fù)

(I)        求實(shí)數(shù)的值及函數(shù)f()的解析式

(II)設(shè)F()= -f()+4+12,問(wèn)取何值時(shí),方程F()=0有正根?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年吉林省高二下學(xué)期期中考試數(shù)學(xué)(理) 題型:解答題

(本小題滿分12分)

       已知函數(shù)f x)=alnxxa為實(shí)常數(shù)).[來(lái)源:ZXXK][來(lái)源:學(xué)*科*網(wǎng)Z*X*X*K]

   (Ⅰ)若a=-2,求證:函數(shù)f x)在(1,+∞)上是增函數(shù);

   (Ⅱ)求函數(shù)fx)在[1,e]上的最小值及相應(yīng)的x值;

   (Ⅲ)若當(dāng)x∈[1,e]時(shí),fx)≤(a+2)x恒成立,求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案