(12分)已知函數(shù)f(x)=x3+mx2+nx-2的圖象過(guò)點(diǎn)(-1,-6),且函數(shù)g(x)=+6x的圖象關(guān)于y軸對(duì)稱.
(1)求m、n的值及函數(shù)y=f(x)的單調(diào)區(qū)間;(6分)
(2)若a>0,求函數(shù)y=f(x)在區(qū)間(a-1,a+1)內(nèi)的極值.(6分)
(1) f(x)的單調(diào)遞減區(qū)間是(0,2).
(2)當(dāng)0<a<1時(shí),f(x)有極大值-2,無(wú)極小值;
當(dāng)1<a<3時(shí),f(x)有極小值-6,無(wú)極大值;
當(dāng)a=1或a≥3時(shí),f(x)無(wú)極值.
【解析】(Ⅰ)利用條件的到兩個(gè)關(guān)于m、n的方程,求出m、n的值,再找函數(shù)y=f(x)的導(dǎo)函數(shù)大于0和小于0對(duì)應(yīng)的區(qū)間即可.(Ⅱ)利用(Ⅰ)的結(jié)論,分情況討論區(qū)間(a-1,a+1)和單調(diào)區(qū)間的位置關(guān)系再得結(jié)論.
(1)由函數(shù)f(x)的圖象過(guò)點(diǎn)(-1,-6),得m-n=-3.①…
由f(x)=x3+mx2+nx-2,得=3x2+2mx+n,………………2分
則g(x)=+6x=3x2+(2m+6)x+n.
而g(x)的圖象關(guān)于y軸對(duì)稱,所以-=0,解得 m=-3.
代入①得n=0.
于是=3x2-6x=3x(x-2).………………………4分
由>0得x>2或x<0,
故f(x)的單調(diào)遞增區(qū)間是(-∞,0),(2,+∞);………………………5分
由<0,得0<x<2,
故f(x)的單調(diào)遞減區(qū)間是(0,2).………………………6分
(2)由(1)得=3x(x-2),令=0得x=0或x=2. ………………7分
當(dāng)x變化時(shí),,f(x)的變化情況如下表:
x |
(-∞,0) |
0 |
(0,2) |
2 |
(2,+∞) |
+ |
0 |
- |
0 |
+ |
|
f(x) |
增函數(shù)? |
極大值 |
減函數(shù) |
極小值 |
增函數(shù)? |
…………………………………9分
由此可得:當(dāng)0<a<1時(shí),f(x)在(a-1,a+1)內(nèi)有極大值f(0)=-2,無(wú)極小值;
當(dāng)a=1時(shí),f(x)在 (a-1,a+1)內(nèi)無(wú)極值;
當(dāng)1<a<3時(shí),f(x)在(a-1,a+1)內(nèi)有極小值f(2)=-6,無(wú)極大值;
當(dāng)a≥3時(shí),f(x)在(a-1,a+1)內(nèi)無(wú)極值.
綜上得,當(dāng)0<a<1時(shí),f(x)有極大值-2,無(wú)極小值;
當(dāng)1<a<3時(shí),f(x)有極小值-6,無(wú)極大值;
當(dāng)a=1或a≥3時(shí),f(x)無(wú)極值.………………………………12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年安徽省蚌埠市懷遠(yuǎn)縣包集中學(xué)高三(下)第七次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年河南省高三12月月考理科數(shù)學(xué)卷 題型:解答題
(本小題滿分12分)
已知函數(shù)f(x)=(x∈R),P1(x1,y1),P2(x2,y2)是函數(shù)y=f(x)圖像上兩點(diǎn),且線段P1P2中點(diǎn)P的橫坐標(biāo)為。
(1)求證P的縱坐標(biāo)為定值; (4分)
(2)若數(shù)列{}的通項(xiàng)公式為=f()(m∈N,n=1,2,3,…,m),求數(shù)列{}的前m項(xiàng)和; (5分)
(3)若m∈N時(shí),不等式<橫成立,求實(shí)數(shù)a的取值范圍。(3分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012年山東省濟(jì)寧市高二上學(xué)期期中考試文科數(shù)學(xué) 題型:解答題
(本小題滿分12分)
已知函數(shù)f()=,當(dāng)∈(-2,6)時(shí),其值為正,而當(dāng)∈(-∞,-2)∪(6,+∞)時(shí),其值為負(fù)
(I) 求實(shí)數(shù)的值及函數(shù)f()的解析式
(II)設(shè)F()= -f()+4+12,問(wèn)取何值時(shí),方程F()=0有正根?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年吉林省高二下學(xué)期期中考試數(shù)學(xué)(理) 題型:解答題
(本小題滿分12分)
已知函數(shù)f (x)=alnx+x2 (a為實(shí)常數(shù)).[來(lái)源:ZXXK][來(lái)源:學(xué)*科*網(wǎng)Z*X*X*K]
(Ⅰ)若a=-2,求證:函數(shù)f (x)在(1,+∞)上是增函數(shù);
(Ⅱ)求函數(shù)f (x)在[1,e]上的最小值及相應(yīng)的x值;
(Ⅲ)若當(dāng)x∈[1,e]時(shí),f (x)≤(a+2)x恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com