(本小題12分)運貨卡車以每小時千米的速度勻速行駛130千米(單位:千米/小時).假設(shè)汽油的價格是每升2a元,而汽車每小時耗油升,司機(jī)的工資是每小時14a元.(1)求這次行車總費用關(guān)于的表達(dá)式;(2)當(dāng)為何值時,這次行車的總費用最低,并求出最低費用的值(a為常數(shù)) .
(1)或:
(2)當(dāng)時,這次行車的總費用最低,最低費用為元。
解析試題分析:(1)求出車所用時間,根據(jù)汽油的價格是每升2元,而汽車每小時耗油升,司機(jī)的工資是每小時14元,可得行車總費用;
(2)利用基本不等式,即可求得這次行車的總費用最低.
(1)設(shè)行車所用時間為 ,
所以,這次行車總費用y關(guān)于x的表達(dá)式是
(或:)............6分
(2) .....................9分
僅當(dāng)時,上述不等式中等號成立 ...................11分
答:當(dāng)時,這次行車的總費用最低,最低費用為元 ....................12分
考點:基本不等式在最值問題中的應(yīng)用;函數(shù)模型的選擇與應(yīng)用.
點評:本題考查函數(shù)模型的構(gòu)建,考查利用基本不等式求最值,確定函數(shù)的模型是關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=
(1)求f(f(-2))的值;
(2)求f(a2+1)(a∈R)的值;
(3)當(dāng)-4≤x<3時,求函數(shù)f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)某車間生產(chǎn)一種儀器的固定成本是10000元,每生產(chǎn)一臺該儀器需要增加投入100
元,已知總收入滿足函數(shù):,其中是儀器的月產(chǎn)量.
(1)將利潤表示為月產(chǎn)量的函數(shù)(用表示);
(2)當(dāng)月產(chǎn)量為何值時,車間所獲利潤最大?最大利潤是多少元?(總收入=總成本+利潤)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)若函數(shù)在的單調(diào)遞減區(qū)間(—∞,2],求函數(shù)在區(qū)間[3,5]上的最大值.
(2)若函數(shù)在在單區(qū)間(—∞,2]上是單調(diào)遞減,求函數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)
(1) 畫出函數(shù)圖像
(2)指出圖像的開口方向、對稱軸方程、頂點坐標(biāo);
(3)求函數(shù)的最大值或最小值;
(4)寫出函數(shù)的單調(diào)區(qū)間
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某家庭進(jìn)行理財投資,根據(jù)長期收益率市場預(yù)測,投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風(fēng)險型產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬元時兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元(如圖).
(1)分別寫出兩種產(chǎn)品的收益與投資額的函數(shù)關(guān)系;
(2)該家庭現(xiàn)有20萬元資金,全部用于理財投資,問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
(1)已知二次函數(shù),求的單調(diào)遞減區(qū)間。
(2)在區(qū)間上單調(diào)遞減,求實數(shù)的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com