6.一個幾何體的三視圖如圖所示(單位:m),則該幾何體的體積為15m3

分析 由題意,幾何體是直三棱柱與三棱錐的組合體,根據(jù)所給數(shù)據(jù),即可求出體積.

解答 解:由題意,幾何體是直三棱柱與三棱錐的組合體,體積為$\frac{1}{2}×3×3×3+\frac{1}{3}×\frac{1}{2}×3×1×3$=15,
故答案為15.

點評 本題考查三視圖與直觀圖,考查幾何體體積的計算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖是一個幾何體的三視圖,其中正視圖和側(cè)視圖是高為2,底邊長為$2\sqrt{2}$的等腰三角形,俯視圖是邊長為2的正方形,則該幾何體的外接球的體積是4$\sqrt{3}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)$f(x)=1+2sin(2x-\frac{π}{3})$.

(Ⅰ)用五點法作圖作出f(x)在x∈[0,π]的圖象;
(2)求f(x)在x∈[$\frac{π}{4}$,$\frac{π}{2}$]的最大值和最小值;
(3)若不等式f(x)-m<2在x∈[$\frac{π}{4}$,$\frac{π}{2}$]上恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓$\frac{x^2}{25}+\frac{y^2}{9}=1$,直線l:4x-5y+40=0.橢圓上是否存在一點,它到直線l的距離最小?最小距離是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知$|{\overrightarrow a}|=1$,$|{\overrightarrow b}|=2$,若$(\overrightarrow a+\overrightarrow{b)}⊥\overrightarrow a$,則$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.從數(shù)字1,2,3,4,5,6中任取2個求出乘積,則所得結(jié)果是3的倍數(shù)的概率是(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知f(x)為奇函數(shù),當(dāng)x<0時,f(x)=ln(-x)+2x,則曲線y=f(x)在點(1,f(1))處的切線方程是x-y+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)函數(shù)f(x)=2x,函數(shù)g(x)的圖象與函數(shù)f(x)的圖象關(guān)于y軸對稱.
(1)若f(x)=4g(x)+3,求x的值;
(2)若存在x∈[0,4],使不等式f(a+x)-g(-2x)≥3成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在△ABC中,內(nèi)角A、B、C的對邊分別為a、b、c,且bsinA=$\sqrt{3}$acosB
(1)求角B的大小
(2)若b=3,sinC=2sinA,求a、c的值及△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案