若y=(x+1)(x+2)(x-1),則y′=( 。
A、x3+2x2-x-2
B、3x2+4x-1
C、3x2+4x-2
D、3x2+4x-3
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:利用導(dǎo)數(shù)運(yùn)算法則直接運(yùn)算即可.
解答: 解:∵y=(x+1)(x+2)(x-1),
∴y′=(x+2)(x-1)+(x+1)(x-1)+(x+1)(x+2)
=3x2+4x-1,
故選B.
點(diǎn)評(píng):本題考查了導(dǎo)數(shù)的簡(jiǎn)單運(yùn)算,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求證:
1
12
+
1
22
+
1
32
+…+
1
n2
7
4
(n∈N+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)函數(shù)y=x
1
3
(1-x)
2
3
的單調(diào)區(qū)間,并求極值;
(2)求函數(shù)y=4x3+3x2-36x+5在區(qū)間[-2,2]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x、y滿足不等式組
y≥x
x+y≤2
x≥a
,且z=2x+y的最大值是最小值的3倍,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)y=lnx-8x2,則此函數(shù)在區(qū)間(
1
4
,
1
2
)和((1,+∞)內(nèi)分別(  )
A、單調(diào)遞增,單調(diào)遞減
B、單調(diào)遞增,單調(diào)遞增
C、單調(diào)遞減,單調(diào)遞增
D、單調(diào)遞減,單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=
1
5
x5
上點(diǎn)M處的切線與直線y=3-x垂直,則切線方程為( 。
A、5x-5y-4=0
B、5x+5y-4=0
C、5x+5y-4=0或5x+5y+4=0
D、5x-5y-4=0或5x-5y+4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三角形內(nèi)角A,B,C的對(duì)邊分別為a,b,c且滿足a2-bc=b2+c2,則∠A
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在6個(gè)電子元件中,有2個(gè)次品,4個(gè)合格品,每次任取一個(gè)測(cè)試,測(cè)試完后不再放回,直到兩個(gè)次品都找到為止,則經(jīng)過4次測(cè)試恰好將2個(gè)次品全部找出的概率( 。
A、
1
5
B、
4
15
C、
2
5
D、
14
15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)若x=1是f(x)=tlnx-
x2
1+x
的一個(gè)極值點(diǎn),求f(x)的單調(diào)區(qū)間;
(Ⅱ)證明:若a1a2…an=1,ai∈R+,n∈N*,則
n
i=1
ai2
1+ai
n
2

(Ⅲ)證明:若a1a2…an≥1,λ∈R+,ai∈R+,n∈N*,則
n
i=1
ai2
λ+ai
n
λ+1

查看答案和解析>>

同步練習(xí)冊(cè)答案