Sn=
1
2
+
1
6
+…+
1
n(n+1)
,且Sn=
6
7
,則n=(  )
分析:由于
1
n(n+1)
=
1
n
-
1
n+1
,利用“裂項求和”即可得到Sn,進而解出即可.
解答:解:∵
1
n(n+1)
=
1
n
-
1
n+1
,
∴Sn=(1-
1
2
)+(
1
2
-
1
3
)
+…+(
1
n
-
1
n+1
)
=1-
1
n+1

Sn=
6
7
,∴1-
1
n+1
=
6
7
,解得n=6.
故選D.
點評:本題考查了數(shù)列的“裂項求和”方法,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

Sn=
1
2
+
1
6
+
1
12
+…+
1
n(n+1)
,若SnSn+1=
3
4
,則n的值為( 。
A、6B、7C、8D、9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

Sn=
1
2
+
1
6
+
1
12
+…+
1
n(n+1)
, 且 SnSn+1=
3
4
,則n的值為
6
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

Sn=
1
2
+
1
6
+
1
12
+…+
1
n(n+1)
(n∈N*),且Sn+1Sn+2=
3
4
,則n的值是
5
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•嘉定區(qū)二模)設Sn=
1
2
+
1
6
+
1
12
+…+
1
n(n+1)
,且Sn•Sn+1=
3
4
,則n的值是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

Sn=
1
2
+
1
6
+…+
1
n(n+1)
,且SnSn+1=
3
4
,則n=( 。

查看答案和解析>>

同步練習冊答案