設(shè)Sn為數(shù)列{an}為前n項(xiàng)和,對(duì)任意的都有(m為常數(shù)且m>0)

(1)求證:{an}為等比數(shù)列;

(2)設(shè)數(shù)列{an}的公比q=f(m),數(shù)列{bn}滿足,求數(shù)列{bn}的通項(xiàng)公式;

(3)在(2)的條件下,求數(shù)列的前n項(xiàng)和Tn。

 

【答案】

(1)證明為等比數(shù)列;(2);

(3)

【解析】

試題分析:由          ①

       ②

①-②得:

為等差數(shù)列

(2)n=1時(shí),

為d=1的等比數(shù)列

(3)用錯(cuò)位相減法得

考點(diǎn):本題主要考查等差數(shù)列、等比數(shù)列的的基礎(chǔ)知識(shí),“錯(cuò)位相消法”求和。

點(diǎn)評(píng):中檔題,本題具有較強(qiáng)的綜合性,本解答從確定通項(xiàng)公式入手,認(rèn)識(shí)到數(shù)列的特征,利用“錯(cuò)位相消法”達(dá)到求和目的。“分組求和法”“裂項(xiàng)相消法”“錯(cuò)位相減法”是高考常?嫉綌(shù)列求和方法。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,Sn=(-1)nan-
1
2n
,n∈N+,則a2+a4+a6+…+a100=
1
3
(1-
1
2100
)
1
3
(1-
1
2100
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,Sn=λan-1(λ為常數(shù),n=1,2,3,…).
(I)若a3=a22,求λ的值;
(II)是否存在實(shí)數(shù)λ,使得數(shù)列{an}是等差數(shù)列?若存在,求出λ的值;若不存在.請(qǐng)說明理由
(III)當(dāng)λ=2時(shí),若數(shù)列{bn}滿足bn+1=an+bn(n=1,2,3,…),且b1=
3
2
,令cn=
an
(an+1) bn
,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•杭州二模)在等差數(shù)列{an},等比數(shù)列{bn}中,a1=b1=1,a2=b2,a4=b3≠b4
(Ⅰ)設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,求anbn和Sn
(Ⅱ)設(shè)Cn=
anbnSn+1
(n∈N*),Rn=C1+C2+…+Cn,求Rn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,Sn=n2+pn,n∈N*,其中p是實(shí)數(shù).
(1)若數(shù)列{
Sn
}
為等差數(shù)列,求p的值;
(2)若對(duì)于任意的m∈N*,am,a2m,a4m成等比數(shù)列,求p的值;
(3)在(2)的條件下,令b1=a1,bn=a2n-1,其前n項(xiàng)和為Tn,求Tn關(guān)于n的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn為數(shù)列{an}的前N項(xiàng)和,且有S1=a,Sn+Sn-1=3n2,n=2,3,4,…
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{an}是單調(diào)遞增數(shù)列,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案