【題目】已知橢圓C: (a>b>0)過點(diǎn)(1, ),且離心率e=.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線l:y=kx+m與橢圓C相交于A,B兩點(diǎn)(A,B不是左右頂點(diǎn)),橢圓的右頂點(diǎn)為D,且滿足·=0,試判斷直線l是否過定點(diǎn),若過定點(diǎn),求出該定點(diǎn)的坐標(biāo);若不過定點(diǎn),請(qǐng)說明理由.
【答案】(1) (2) 直線過定點(diǎn)(,0)
【解析】試題分析:(Ⅰ)由e=可得,利用,把點(diǎn)(1, )代入橢圓方程,即可得出橢圓C的標(biāo)準(zhǔn)方程;(Ⅱ)設(shè)A(x1,y1),B(x2,y2),聯(lián)立,得到根與系數(shù)的關(guān)系,利用,得到kAD·kBD=-1,即可得出結(jié)論.
試題解析:(Ⅰ)由題意橢圓的離心率e=.
∴
∴a=2c
∴b2=a2-c2=3c2
∴橢圓方程為
又∵點(diǎn)(1, )在橢圓上
∴
∴c2=1
∴橢圓的方程為
(Ⅱ)設(shè)A(x1,y1),B(x2,y2),由得(3+4k2)x2+8mkx+4(m2-3)=0,
Δ=64m2k2-16(3+4k2)(m2-3)>0,3+4k2-m2>0,則x1+x2=,x1·x2=
∴y1·y2=(kx1+m)·(kx2+m)=k2x1x2+mk(x1+x2)+m2=
∵
∴kAD·kBD=-1
又∵橢圓的右頂點(diǎn)D(2,0),
∴,則y1y2+x1x2-2(x1+x2)+4=0
,7m2+16mk+4k2=0,解得
m1=-2k,m2=,且滿足3+4k2-m2>0
當(dāng)m=-2k時(shí),l:y=k(x-2),直線過定點(diǎn)(2,0)與已知矛盾;
當(dāng)m=時(shí),l:y=k(x),直線過定點(diǎn)(,0).
綜上可知,直線l過定點(diǎn),定點(diǎn)坐標(biāo)為(,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2-ax+2lnx,a∈R.
(Ⅰ)若曲線y=f(x)在(1,f(1))處的切線垂直于直線y=x,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若x>1時(shí),f(x)>0恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(導(dǎo)學(xué)號(hào):05856287)
已知點(diǎn)A(0,1)與B(, )都在橢圓C: (a>b>0)上,直線AB交x軸于點(diǎn)M.
(Ⅰ)求橢圓C的方程,并求點(diǎn)M的坐標(biāo);
(Ⅱ)設(shè)O為原點(diǎn),點(diǎn)D與點(diǎn)B關(guān)于x軸對(duì)稱,直線AD交x軸于點(diǎn)N.問:y軸上是否存在點(diǎn)E,使得∠OEM=∠ONE?若存在,求點(diǎn)E的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
已知曲線C1的參數(shù)方程為: (θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為: ,直線l的直角坐標(biāo)方程為.
(l)求曲線C1和直線l的極坐標(biāo)方程;
(2)已知直線l分別與曲線C1、曲線C2交異于極點(diǎn)的A,B,若A,B的極徑分別為ρ1,ρ2,求|ρ2﹣ρ1|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時(shí)間的關(guān)系,對(duì)該校200名學(xué)生的課外體育鍛煉平均每天運(yùn)動(dòng)的時(shí)間(單位:分鐘)進(jìn)行調(diào)查,將收集的數(shù)據(jù)分成六組,并作出頻率分布直方圖(如圖),將日均課外體育鍛煉時(shí)間不低于40分鐘的學(xué)生評(píng)價(jià)為“課外體育達(dá)標(biāo)”.
(1)請(qǐng)根據(jù)直方圖中的數(shù)據(jù)填寫下面的列聯(lián)表,并通過計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為“課外體育達(dá)標(biāo)”與性別有關(guān)?
(2)現(xiàn)按照“課外體育達(dá)標(biāo)”與“課外體育不達(dá)標(biāo)”進(jìn)行分層抽樣,抽取8人,再?gòu)倪@8名學(xué)生中隨機(jī)抽取3人參加體育知識(shí)問卷調(diào)查,記“課外體育不達(dá)標(biāo)”的人數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖像在上連續(xù)不斷,定義:
(),(),其中表示函數(shù)在上的最小值, 表示函數(shù)在上的最大值,若存在最小正整數(shù),使得對(duì)任意的成立,則稱函數(shù)為上的“階收縮函數(shù)”.
(1)若, ,試寫出, 的表達(dá)式;
(2)已知函數(shù), ,判斷是否為上的“階收縮函數(shù)”,如果是,求出對(duì)應(yīng)的,如果不是,請(qǐng)說明理由;
(3)已知,函數(shù),是上的2階收縮函數(shù),求的取值范圍.
數(shù)學(xué)附加題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線上任意一點(diǎn)到的距離比到軸的距離大1,橢圓的中心在原點(diǎn),一個(gè)焦點(diǎn)與的焦點(diǎn)重合,長(zhǎng)軸長(zhǎng)為4.
(Ⅰ)求曲線和橢圓的方程;
(Ⅱ)橢圓上是否存在一點(diǎn),經(jīng)過點(diǎn)作曲線的兩條切線(為切點(diǎn))使得直線過橢圓的上頂點(diǎn),若存在,求出切線的方程,不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(導(dǎo)學(xué)號(hào):05856330)
已知等比數(shù)列{an}的前n項(xiàng)和為Sn,且a3=4,a3,a4+2,a5成等差數(shù)列.?dāng)?shù)列{}的前n項(xiàng)和為Tn.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式以及前n項(xiàng)和Sn的表達(dá)式;
(Ⅱ)若Tn<m對(duì)任意n∈N*恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,向高為H的水瓶A,B,C,D同時(shí)以等速注水,注滿為止;
(1)若水深h與注水時(shí)間t的函數(shù)圖象是下圖中的a,則水瓶的形狀是________;
(2)若水量ν與水深h的函數(shù)圖像是下圖中的b,則水瓶的形狀是________;
(3)若水深h與注水時(shí)間t的函數(shù)圖象是下圖中的c,則水瓶的形狀是________;
(4)若注水時(shí)間t與水深h的函數(shù)圖象是下圖中的d,則水瓶的形狀是________。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com