【題目】通過隨機詢問110名性別不同的大學生是否愛好某項運動,得到如下的列聯(lián)表:

合計

愛好

40

20

60

不愛好

20

30

50

合計

60

50

110

K2,

附表:

P(K2k0)

0.050

0.010

0.001

k0

3.841

6.635

10.828

參照附表,得到的正確結論是(

A.在犯錯誤的概率不超過0.1%的前提下,認為愛好該項運動與性別有關

B.在犯錯誤的概率不超過0.1%的前提下,認為愛好該項運動與性別無關

C.99%以上的把握認為愛好該項運動與性別有關

D.99%以上的把握認為愛好該項運動與性別無關

【答案】C

【解析】

根據(jù)所給數(shù)據(jù),計算出卡方,再與參考數(shù)據(jù)比較,即可得出結論;

解:

,

這個結論有的機會說錯,

即有以上的把握認為“愛好該項運動與性別有關”.

故正確是

故選:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】若在兩個成語中,一個成語的末字恰是另一成語的首字,則稱這兩個成語有頂真關系,現(xiàn)從分別貼有成語人定勝天、爭先恐后、一馬當先天馬行空、先發(fā)制人5張大小形狀完全相同卡片中,任意抽取2張,則這2張卡片上的成語有頂真關系的概率為( 。

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班隨機抽查了名學生的數(shù)學成績,分數(shù)制成如圖的莖葉圖,其中組學生每天學習數(shù)學時間不足個小時,組學生每天學習數(shù)學時間達到一個小時,學校規(guī)定分及分以上記為優(yōu)秀,分及分以上記為達標,分以下記為未達標.

1)根據(jù)莖葉圖完成下面的列聯(lián)表:

達標

未達標

總計

總計

2)判斷是否有的把握認為“數(shù)學成績達標與否”與“每天學習數(shù)學時間能否達到一小時”有關.

參考公式與臨界值表:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校為鼓勵家;,與某手機通訊商合作,為教師辦理流量套餐.為了解該校教師手機流量使用情況,通過抽樣,得到位教師近年每人手機月平均使用流量(單位:)的數(shù)據(jù),其頻率分布直方圖如下:

若將每位教師的手機月平均使用流量分別視為其手機月使用流量,并將頻率為概率,回答以下問題.

(Ⅰ) 從該校教師中隨機抽取人,求這人中至多有人月使用流量不超過 的概率;

(Ⅱ) 現(xiàn)該通訊商推出三款流量套餐,詳情如下:

套餐名稱

月套餐費(單位:元)

月套餐流量(單位:)

這三款套餐都有如下附加條款:套餐費月初一次性收取,手機使用一旦超出套餐流量,系統(tǒng)就自動幫用戶充值 流量,資費元;如果又超出充值流量,系統(tǒng)就再次自動幫用戶充值 流量,資費元/次,依次類推,如果當月流量有剩余,系統(tǒng)將自動清零,無法轉入次月使用.

學校欲訂購其中一款流量套餐,為教師支付月套餐費,并承擔系統(tǒng)自動充值的流量資費的,其余部分由教師個人承擔,問學校訂購哪一款套餐最經濟?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“割圓術”是劉徽最突出的數(shù)學成就之一,他在《九章算術注》中提出割圓術,并作為計算圓的周長,面積已經圓周率的基礎,劉徽把圓內接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個近似數(shù)值,這個結果是當時世界上圓周率計算的最精確數(shù)據(jù).如圖,當分割到圓內接正六邊形時,某同學利用計算機隨機模擬法向圓內隨機投擲點,計算得出該點落在正六邊形內的頻率為0.8269,那么通過該實驗計算出來的圓周率近似值為(參考數(shù)據(jù):

A. 3.1419B. 3.1417C. 3.1415D. 3.1413

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)2007年至2013年農村居民家庭純收入y(單位:千元)的數(shù)據(jù)如下表:

年份

2007

2008

2009

2010

2011

2012

2013

年份代號t

1

2

3

4

5

6

7

人均純收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)求y關于t的線性回歸方程;

(2)利用(1)中的回歸方程,分析2007年至2013年該地區(qū)農村居民家庭人均純收入的變化情況,并預測該地區(qū)2015年農村居民家庭人均純收入.

附:回歸直線的斜率和截距的最小二乘法估計公式分別為:

,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象過點,且在點處的切線與直線平行.

1)求實數(shù)的值;

2)若對任意的,函數(shù)在區(qū)間上總不是單調函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的數(shù)表為森德拉姆篩(森德拉姆,東印度學者),其特點是每行每列都成等差數(shù)列.在此表中,數(shù)字“121”出現(xiàn)的次數(shù)為___________.

2

3

4

5

6

7

……

3

5

7

9

11

13

……

4

7

10

13

16

19

……

5

9

13

17

21

25

……

6

11

16

21

26

31

……

7

13

19

25

31

37

……

……

……

……

……

……

……

……

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

在極坐標系中,為極點,點,點.

(1)以極點為坐標原點,極軸為軸的正半軸建立平面直角坐標系,求經過,三點的圓的直角坐標方程;

(2)在(1)的條件下,圓的極坐標方程為,若圓與圓相切,求實數(shù)的值.

查看答案和解析>>

同步練習冊答案