分析 (1)先求出導(dǎo)函數(shù),再根據(jù)導(dǎo)數(shù)和函數(shù)的單調(diào)性關(guān)系求出單調(diào)區(qū),即可得到函數(shù)的極值,
(2)分離參數(shù),構(gòu)造函數(shù),根據(jù)導(dǎo)數(shù)和函數(shù)的最值得關(guān)系即可求出參數(shù)k的取值范圍.
解答 解:(1)函數(shù)f(x)的定義域為(0,+∞),
∴f′(x)=$\frac{m-lnx}{{x}^{2}}$,
令f′(x)=0,解得x=em,
當x∈(0,em)時,f′(x)>0,f(x)單調(diào)遞增,
當x∈(em,+∞)時,f′(x)<0,f(x)單調(diào)遞減,
當x=em時,f(x)有極大值,且極大值為f(em)=e-m,
(2)f(x)≥$\frac{k}{x+1}$對x∈[1,+∞)恒成立,
∴k≤$\frac{x+11+lnx}{x}$對x∈[1,+∞)恒成立,
令g(x)=$\frac{x+11+lnx}{x}$,
∴g′(x)=$\frac{x-lnx}{{x}^{2}}$,
令h(x)=x-lnx,
則h′(x)=1-$\frac{1}{x}$,
∵x>1,
∴h′(x)≥0,
∴h(x)在[1,+∞)上單調(diào)遞增,
∴h(x)≥h(1)=1>0,
∴g′(x)>0,
∴g(x)在[1,+∞)上單調(diào)遞增,
∴g(x)min=g(1)=2,
∴k≤2,
故k的取值范圍為(-∞,2]
點評 本題考查了導(dǎo)數(shù)和函數(shù)的極值和最值得關(guān)系,以及參數(shù)的取值范圍和恒成立的問題,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | 2 | C. | -2或2 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com