【題目】已知函數(shù)為奇函數(shù)

1)比較的大小,并說明理由.(提示:

2)若,且對(duì)恒成立,求實(shí)數(shù)的取值范圍.

【答案】1;(2.

【解析】試題分析:(1)由于函數(shù)為奇函數(shù), ,求得為減函數(shù),通過計(jì)算證得,所以;(2)利用函數(shù)的奇偶性,化簡(jiǎn)原不等式為,根據(jù)單調(diào)性和定義域,列不等式,分離參數(shù)求得參數(shù)的取值范圍.

試題解析:

1函數(shù)為奇函數(shù),

,,對(duì)恒成立,,

...............2

...................................4

,

................................6

上遞減,.............7

2)由為奇函數(shù)可得,

,

上遞減,

對(duì)恒成立,

上遞增,,又,..........12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)上的偶函數(shù).

(1)求實(shí)數(shù)的值;

(2)判斷并證明函數(shù)上單調(diào)性;

(3)求函數(shù)上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了了解一年內(nèi)的用水情況,抽取了10天的用水量如下表所示:

天數(shù)

1

1

1

2

2

1

2

用水量/噸

22

38

40

41

44

50

95

(Ⅰ)在這10天中,該公司用水量的平均數(shù)是多少?每天用水量的中位數(shù)是多少?

(Ⅱ)你認(rèn)為應(yīng)該用平均數(shù)和中位數(shù)中的哪一個(gè)數(shù)來描述該公司每天的用水量?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量

(1)分別表示將一枚質(zhì)地均勻的正方體骰子(六個(gè)面的點(diǎn)數(shù)分別為1,2,3,4,5,6)先后拋擲兩次時(shí)第一次、第二次出現(xiàn)的點(diǎn)數(shù),求滿足的概率

(2)在連續(xù)區(qū)間上取值,求滿足的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù),在以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為.

1求圓的普通方程和直線的直角坐標(biāo)方程;

2設(shè)直線軸,軸分別交于兩點(diǎn),點(diǎn)是圓上任一點(diǎn),求兩點(diǎn)的極坐標(biāo)和面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的內(nèi)角的對(duì)邊分別為,且

1)求角的大;

2)若的面積為,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

已知平面直角坐標(biāo)系,以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,點(diǎn)的極坐標(biāo)為,曲線的參數(shù)方程為為參數(shù)).

1寫出點(diǎn)的直角坐標(biāo)及曲線的直角坐標(biāo)方程;

2為曲線上的動(dòng)點(diǎn),求中點(diǎn)到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線,半徑為2的圓相切,圓心軸上且在直線的右上方

(1)求圓的方程;

(2)若直線過點(diǎn)且與圓交于兩點(diǎn)軸上方,軸下方),問在軸正半軸上是否存在定點(diǎn)使得軸平分?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】方程兩個(gè)不等的負(fù)根;方程實(shí)根.若”為真,“假,求取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案