【題目】某產(chǎn)品自生產(chǎn)并投入市場以來,生產(chǎn)企業(yè)為確保產(chǎn)品質(zhì)量,決定邀請第三方檢測機構(gòu)對產(chǎn)品進行質(zhì)量檢測,并依據(jù)質(zhì)量指標來衡量產(chǎn)品的質(zhì)量.當時,產(chǎn)品為優(yōu)等品;當時,產(chǎn)品為一等品;當時,產(chǎn)品為二等品.第三方檢測機構(gòu)在該產(chǎn)品中隨機抽取500件,繪制了這500件產(chǎn)品的質(zhì)量指標的條形圖.用隨機抽取的500件產(chǎn)品作為樣本,估計該企業(yè)生產(chǎn)該產(chǎn)品的質(zhì)量情況,并用頻率估計概率.
(1)從該企業(yè)生產(chǎn)的所有產(chǎn)品中隨機抽取1件,求該產(chǎn)品為優(yōu)等品的概率;
(2)現(xiàn)某人決定購買80件該產(chǎn)品.已知每件成本1000元,購買前,邀請第三方檢測機構(gòu)對要購買的80件產(chǎn)品進行抽樣檢測.買家、企業(yè)及第三方檢測機構(gòu)就檢測方案達成以下協(xié)議:從80件產(chǎn)品中隨機抽出4件產(chǎn)品進行檢測,若檢測出3件或4件為優(yōu)等品,則按每件1600元購買,否則按每件1500元購買,每件產(chǎn)品的檢測費用250元由企業(yè)承擔.記企業(yè)的收益為元,求的分布列與數(shù)學期望;
(3)商場為推廣此款產(chǎn)品,現(xiàn)面向意向客戶推出“玩游戲,送大獎”活動.客戶可根據(jù)拋硬幣的結(jié)果,操控機器人在方格上行進,已知硬幣出現(xiàn)正、反面的概率都是,方格圖上標有第0格、第1格、第2格、……、第50格.機器人開始在第0格,客戶每擲一次硬幣,機器人向前移動一次,若擲出正面,機器人向前移動一格(從到),若擲出反面,機器人向前移動兩格(從到),直到機器人移到第49格(勝利大本營)或第50格(失敗大本營)時,游戲結(jié)束,若機器人停在“勝利大本營”,則可獲得優(yōu)惠券.設(shè)機器人移到第格的概率為,試證明是等比數(shù)列,并解釋此方案能否吸引顧客購買該款產(chǎn)品.
【答案】(1)(2)分布見解析,數(shù)學期望為41500;(3)證明見解析,此方案能吸引顧客購買該款產(chǎn)品.
【解析】
(1)根據(jù)條形圖,可得優(yōu)等品的頻率為,進而可得其概率;(2)計算出的值可以為47000,39000,計算出其分別對應的概率,得到分布列,進而可得期望;(3)首先易得,,根據(jù)題意可得,化簡即可得,即為等比數(shù)列,利用累加法可得,再分別計算出獲勝和失敗的概率,比較大小即可得結(jié)果.
(1)根據(jù)條形圖可知,優(yōu)等品的頻率為,用頻率估計概率,則任取一件產(chǎn)品為優(yōu)等品的概率為.
(2)由(1)任取一件產(chǎn)品為優(yōu)等品的概率為,
由題意,或
;
.
故的分布列為:
47000 | 39000 | |
所以數(shù)學期望.
(3)機器人在第0格為必然事件,,第一次擲硬幣出現(xiàn)正面,機器人移到第1格,其概率.機器人移到第格的情況只有兩種:
①先到第格,又出現(xiàn)反面,其概率,
②先到第格,又出現(xiàn)正面,其概率.
所以,故
所以時,數(shù)列為首項,
公比為的等比數(shù)列.
所以,,,,,
以上各式累加,得,
所以
所以獲勝概率,
失敗概率
,所以獲勝概率更大,
故此方案能吸引顧客購買該款產(chǎn)品.
科目:高中數(shù)學 來源: 題型:
【題目】在股票市場上,投資者常根據(jù)股價每股的價格走勢圖來操作,股民老張在研究某只股票時,發(fā)現(xiàn)其在平面直角坐標系內(nèi)的走勢圖有如下特點:每日股價元與時間天的關(guān)系在ABC段可近似地用函數(shù)的圖象從最高點A到最低點C的一段來描述如圖,并且從C點到今天的D點在底部橫盤整理,今天也出現(xiàn)了明顯的底部結(jié)束信號.老張預測這只股票未來一段時間的走勢圖會如圖中虛線DEF段所示,且DEF段與ABC段關(guān)于直線l:對稱,點B,D的坐標分別是.
請你幫老張確定a,,的值,并寫出ABC段的函數(shù)解析式;
如果老張預測準確,且今天買入該只股票,那么買入多少天后股價至少是買入價的兩倍?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某闖關(guān)游戲共有兩關(guān),游戲規(guī)則:先闖第一關(guān),當?shù)谝魂P(guān)闖過后,才能進入第二關(guān),兩關(guān)都闖過,則闖關(guān)成功,且每關(guān)各有兩次闖關(guān)機會.已知闖關(guān)者甲第一關(guān)每次闖過的概率均為,第二關(guān)每次闖過的概率均為.假設(shè)他不放棄每次闖關(guān)機會,且每次闖關(guān)互不影響.
(1)求甲恰好闖關(guān)3次才闖關(guān)成功的概率;
(2)記甲闖關(guān)的次數(shù)為,求隨機變量的分布列和期望.。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下面幾種推理是類比推理的( )
A. 兩條直線平行,同旁內(nèi)角互補,如果和是兩條平行直線的同旁內(nèi)角,則
B. 由平面三角形的性質(zhì),推測空間四邊形的性質(zhì)
C. 某校高二級有20個班,1班有51位團員,2班有53位團員,3班有52位團員,由此可以推測各班都超過50位團員.
D. 一切偶數(shù)都能被2整除,是偶數(shù),所以能被2整除.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)曲線(),是直線上的任意一點,過作的切線,切點分別為、,記為坐標原點.
(1)設(shè),求的面積;
(2)設(shè)、、的縱坐標依次為、、,求證:;
(3)設(shè)點滿足,是否存在這樣的點,使得關(guān)于直線的對稱點在上?若存在,求出的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知p:x2≤5x-4,q:x2-(a+2)x+2a≤0.
(1)若p是真命題,求對應x的取值范圍;
(2)若p是q的必要不充分條件,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年某地區(qū)初中升學體育考試規(guī)定:考生必須參加長跑、擲實心球、1分鐘跳繩三項測試.某學校在九年級上學期開始,就為掌握全年級學生1分鐘跳繩情況,抽取了100名學生進行測試,得到下面的頻率分布直方圖.
(Ⅰ)規(guī)定學生1分鐘跳繩個數(shù)大于等于185為優(yōu)秀.若在抽取的100名學生中,女生共有50人,男生1分鐘跳繩個數(shù)大于等于185的有28人.根據(jù)已知條件完成下面的列聯(lián)表,并根據(jù)這100名學生的測試成績,判斷能否有99%的把握認為學生1分鐘跳繩成績是否優(yōu)秀與性別有關(guān).
1分鐘跳繩成績 | 優(yōu)秀 | 不優(yōu)秀 | 合計 |
男生人數(shù) | 28 | ||
女生人數(shù) | 100 | ||
合計 | 100 |
(Ⅱ)根據(jù)往年經(jīng)驗,該校九年級學生經(jīng)過訓練,正式測試時每人1分鐘跳繩個數(shù)都有明顯進步.假設(shè)正式測試時每人1分鐘跳繩個數(shù)都比九年級上學期開始時增加10個,全年級恰有2000名學生,若所有學生的1分鐘跳繩個數(shù)服從正態(tài)分布,用樣本數(shù)據(jù)的平均值和標準差估計和,各組數(shù)據(jù)用中點值代替),估計正式測試時1分鐘跳繩個數(shù)大于183的人數(shù)(結(jié)果四舍五入到整數(shù)
附: ,其中 .
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
若隨機變量服從正態(tài)分布,則
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=2sin(ωx+φ)(ω>0,|φ|<)的一個零點為,其圖象距離該零點最近的一條對稱軸為x=.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若關(guān)于x的方程f(x)+log2k=0在x∈[,]上恒有實數(shù)解,求實數(shù)k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com