若f(x)=
2
lg(1-x)
,則f(x)的定義域是( 。
分析:函數(shù)的定義域,就是使函數(shù)成立的x的取值范圍,因?yàn)楹瘮?shù)中有分式,所以分母不等于0,因?yàn)橛袑?duì)數(shù),所以真數(shù)大于1,再解不等式組即可.
解答:解:要使函數(shù)有意義,需滿(mǎn)足
1-x>0
lg(1-x)≠0

解不等式組,得
x<1
x≠0

∴函數(shù)f(x)的定義域?yàn)椋?∞,0)∪(0,1)
故選D
點(diǎn)評(píng):本題主要考查了根據(jù)函數(shù)解析式求函數(shù)的定義域,轉(zhuǎn)化成尋找使函數(shù)有意義的x的取值范圍
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

18、已知函數(shù)f(x)=2lg(x+1)和g(x)=lg(2x+t)(t為常數(shù)).
(1)求函數(shù)f(x)的定義域;
(2)若x∈[0,1]時(shí),g(x)有意義,求實(shí)數(shù)t的取值范圍.
(3)若x∈[0,1]時(shí),f(x)≤g(x)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列各式中正確的有
(3)
(3)
.(把你認(rèn)為正確的序號(hào)全部寫(xiě)上)
(1)[(-2)2]
1
2
=-
1
2
;      
(2)已知loga
3
4
<1
則a
3
4
;
(3)函數(shù)y=3x的圖象與函數(shù)y=-3-x的圖象關(guān)于原點(diǎn)對(duì)稱(chēng);
(4)函數(shù)y=lg(-x2+x)的遞增區(qū)間為(-∞,
1
2
];
(5)若函數(shù)f(x)=2lg(x-a)-lg(x+1)有兩個(gè)零點(diǎn),則a的取值范圍是(-
5
4
,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•大連二模)若f(x)=
2ex-1,x<2
lg(x2+1),x≥2
則f(f(3))的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若f(x)=
2
lg(1-x)
,則f(x)的定義域是( 。
A.(1,+∞)B.(0,1)∪(1,+∞)
C.(-∞,-1)∪(-1,+0)D.(-∞,0)∪(0,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案