17.點(diǎn)M為直線5x+12y=0上任一點(diǎn),F(xiàn)1(-13,0),F(xiàn)2(13,0),則下列結(jié)論正確的是( 。
A.||MF1|-|MF2||>24B.||MF1|-|MF2||=24C.||MF1|-|MF2||<24D.以上都有可能

分析 運(yùn)用雙曲線的定義,可得雙曲線方程和漸近線方程,即可得到結(jié)論.

解答 解:若||MF1|-|MF2||=24,
則點(diǎn)M的軌跡是以F1(-13,0),F(xiàn)2(13,0)為焦點(diǎn)的雙曲線,
其方程為$\frac{{x}^{2}}{144}-\frac{{y}^{2}}{25}$=1.因?yàn)橹本5x+12y=0是它的漸近線,整條直線在雙曲線的外面,
因此有||MF1|-|MF2||<24.
故選:C.

點(diǎn)評(píng) 本題考查雙曲線的定義、方程和性質(zhì),考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合U={-1,0,1},B={x|x=m2,m∈U},則∁UB=(  )
A.{0,1}B.{-1,0,1}C.D.{-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某商場(chǎng)搞促銷,規(guī)定顧客購物達(dá)到一定金額可抽獎(jiǎng),最多有三次機(jī)會(huì),每次抽中,可依次分別獲得20元、30元、50元獎(jiǎng)金,顧客每次抽中后,可以選擇帶走所得獎(jiǎng)金,結(jié)束抽獎(jiǎng);也可以選擇繼續(xù)抽獎(jiǎng),若有任何一次沒有抽中,則連同前面所得獎(jiǎng)金也全部歸零,結(jié)束抽獎(jiǎng),設(shè)顧客甲第一次、第二次、第三次抽中的概率分別為$\frac{3}{4}$,$\frac{2}{3}$,$\frac{1}{2}$,選擇繼續(xù)抽獎(jiǎng)的概率均為$\frac{1}{2}$,且每次是否抽中互不影響.
(Ⅰ)求顧客甲第一次抽中,但所得獎(jiǎng)金為零的概率;
(Ⅱ)設(shè)該顧客所得獎(jiǎng)金總數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知二次函數(shù)f(x)=x2-bx+c在x=1處取得最小值-1.
(1)解不等式|f(x)|+|f(-x)|≥6|x|;
(2)若實(shí)數(shù)a滿足|x-a|<1,求證:|f(x)-f(a)|<2|a|+3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在平面直角坐標(biāo)系xOy中,橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率為$\frac{{\sqrt{3}}}{2}$,以原點(diǎn)為圓心,以橢圓C的短半軸長(zhǎng)為半徑的圓與直線x-y+$\sqrt{2}$=0相切,過點(diǎn)F2的直線l與橢圓相交于M,N兩點(diǎn).
(1)求橢圓C的方程;
(2)若$\overrightarrow{M{F_1}}=3\overrightarrow{{F_1}N}$,求直線l的方程;
(3)求△F1MN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知拋物線M:y=x2,圓N:x2+(y-2)2=1.
(1)過點(diǎn)A(1,1)作圓N的切線交拋物線M于點(diǎn)B,求點(diǎn)B的坐標(biāo);
(2)過點(diǎn)A(a,a2)(a≠±1)作圓N的兩條切線AB,AC交拋物線M于點(diǎn)B,C,連接BC,判斷直線BC與圓N的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)f(x)是定義在R上的偶函數(shù),對(duì)任意的x∈R,都有f(x-2)=f(x+2),且當(dāng)x∈[-2,0]時(shí)f(x)=($\frac{1}{2}$)x-1,若關(guān)于x的方程f(x)-loga(x+2)=0(a>1)在區(qū)間[-2,6]內(nèi)恰有三個(gè)不同的實(shí)根,則實(shí)數(shù)a的取值范圍是($\root{3}{4}$,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.成等差數(shù)列的三個(gè)正數(shù)的和等于12,并且這三個(gè)數(shù)分別加上1,4,11后成為等比數(shù)列{bn}中的b2,b3,b4,則數(shù)列{bn}的通項(xiàng)公式為(  )
A.bn=2nB.bn=3nC.bn=2n-1D.bn=3n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)不等式組$\left\{\begin{array}{l}x+y-4≤0\\ x-y≥0\\ y≥0\end{array}\right.$表示的平面區(qū)域?yàn)镈,在區(qū)域D內(nèi)隨機(jī)取一個(gè)點(diǎn),則此點(diǎn)到坐標(biāo)原點(diǎn)的距離大于2的概率是1$-\frac{π}{8}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案