已知?jiǎng)又本(xiàn)l與橢圓交于P(x1,y1),Q(x2,y2)兩個(gè)不同點(diǎn),且△OPQ的面積,其中O為坐標(biāo)原點(diǎn).

(Ⅰ)證明:x+x和y+y均為定值;

(Ⅱ)設(shè)線(xiàn)段PQ的中點(diǎn)為M,求OM·PQ的最大值;

(Ⅲ)橢圓C上是否存在點(diǎn)D,E,G,使得?若存在,判斷△DEG的形狀;若不存在,請(qǐng)說(shuō)明理由.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)上任意一點(diǎn)到兩焦點(diǎn)距離之和為2
3
,離心率為
3
3
,左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P是右準(zhǔn)線(xiàn)上任意一點(diǎn),過(guò)F2作直線(xiàn)PF2的垂線(xiàn)F2Q交橢圓于Q點(diǎn).
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)證明:直線(xiàn)PQ與直線(xiàn)OQ的斜率之積是定值;
(3)點(diǎn)P的縱坐標(biāo)為3,過(guò)P作動(dòng)直線(xiàn)l與橢圓交于兩個(gè)不同點(diǎn)M、N,在線(xiàn)段MN上取點(diǎn)H,滿(mǎn)足
MP
PN
=
MH
HN
,試證明點(diǎn)H恒在一定直線(xiàn)上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
3
3
,它的上頂點(diǎn)為A,左、右焦點(diǎn)分別為F1,F(xiàn)2,直線(xiàn)AF1,AF2分別交橢圓于點(diǎn)B,C.
(1)求證直線(xiàn)BO平分線(xiàn)段AC;
(2)設(shè)點(diǎn)P(m,n)(m,n為常數(shù))在直線(xiàn)BO上且在橢圓外,過(guò)P的動(dòng)直線(xiàn)l與橢圓交于兩個(gè)不同點(diǎn)M,N,在線(xiàn)段MN上取點(diǎn)Q,滿(mǎn)足
MP
NP
=
MQ
QN
,試證明點(diǎn)Q恒在一定直線(xiàn)上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年普通高等學(xué)校招生全國(guó)統(tǒng)一考試山東卷數(shù)學(xué)理科 題型:044

已知?jiǎng)又本(xiàn)l與橢圓C:=1交于P(x1,y1),Q(x2,y2)兩不同點(diǎn),且△OPQ的面積S△OPQ,其中O為坐標(biāo)原點(diǎn).

(Ⅰ)證明:x+x和y+y均為定值;

(Ⅱ)設(shè)線(xiàn)段PQ的中點(diǎn)為M,求|OM|·|PQ|的最大值;

(Ⅲ)橢圓C上是否存在三點(diǎn)D,E,G,使得S△ODE=S△DDG=S△OEG?若存在,判斷△DEG的形狀;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:山東省高考真題 題型:解答題

已知?jiǎng)又本(xiàn)l與橢圓C:交于P(x1,y1),Q(x2,y2)兩不同點(diǎn),且△OPQ的面積,其中O為坐標(biāo)原點(diǎn).
(Ⅰ)證明:x12+x22和y12+y22均為定值;
(Ⅱ)設(shè)線(xiàn)段PQ的中點(diǎn)為M,求|OM|·|PQ|的最大值;
(Ⅲ)橢圓C上是否存在三點(diǎn)D,E,G,使得?若存在,判斷△DEG的形狀;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案