11.某校3名教師和3名學(xué)生共6人去北京參加學(xué)習(xí)方法研討會(huì),須乘坐兩輛車(chē),每車(chē)坐3人,則恰有兩名教師在同一車(chē)上的概率( 。
A.$\frac{1}{9}$B.$\frac{2}{3}$C.$\frac{9}{20}$D.$\frac{2}{5}$

分析 先求出基本事件總數(shù)n=${C}_{6}^{3}$=20,再求出恰有兩名教師在同一車(chē)上包含的基本事件個(gè)數(shù)m=${C}_{3}^{2}{C}_{3}^{1}=9$,由此能出恰有兩名教師在同一車(chē)上的概率.

解答 解:∵某校3名教師和3名學(xué)生共6人去北京參加學(xué)習(xí)方法研討會(huì),
須乘坐兩輛車(chē),每車(chē)坐3人,
∴基本事件總數(shù)n=${C}_{6}^{3}$=20,
恰有兩名教師在同一車(chē)上包含的基本事件個(gè)數(shù)m=${C}_{3}^{2}{C}_{3}^{1}=9$,
∴恰有兩名教師在同一車(chē)上的概率p=$\frac{m}{n}=\frac{9}{20}$.
故選:C.

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題是要認(rèn)真審題,注意等可能事件概率計(jì)算公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}+1,x≥0\\ 1,{\;}^{\;}{\;}^{\;}x<0\end{array}\right.$的值域?yàn)閇1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)$f(x)=\frac{{1+a{x^2}}}{x+b}(a≠0)$是奇函數(shù),且函數(shù)f(x)的圖象過(guò)點(diǎn)(1,3).
(1)求實(shí)數(shù)a,b值;
(2)用定義證明函數(shù)f(x)在$(\frac{{\sqrt{2}}}{2},+∞)$上單調(diào)遞增;
(3)求函數(shù)[1,+∞)上f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)$f(x)={({\frac{1}{2}})^x}-1-{log_2}x$,若x0是方程f(x)=0的根,則x0∈(  )
A.$({0,\frac{1}{2}})$B.$({\frac{1}{2},1})$C.$({1,\frac{3}{2}})$D.$({\frac{3}{2},2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,且Sn滿(mǎn)足:2Sn2-(3n2+3n-2)Sn-3(n2+n)=0,n∈N*
(Ⅰ)求a1的值;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)設(shè)bn=$\frac{a_n}{{{3^{n+1}}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若函數(shù)f(x)滿(mǎn)足f(x-1)=x2+1,則f(-1)=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)y=f(x)的圖象如圖所示,則函數(shù)y=f(6x)的零點(diǎn)個(gè)數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若$x{log_4}3=\frac{1}{2}$,則${log_2}{3^x}+{9^x}$等于( 。
A.3B.5C.7D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.關(guān)于x的不等式|x-1|+|x+2|≥m在R上恒成立,則實(shí)數(shù)m的取值范圍為( 。
A.(1,+∞)B.(-∞,1]C.(3,+∞)D.(-∞,3]

查看答案和解析>>

同步練習(xí)冊(cè)答案