【題目】[選修4-5:不等式選講]已知函數(shù)f(x)=2|x+1|+|x﹣2|的最小值為m.
(Ⅰ)求實(shí)數(shù)m的值;
(Ⅱ)若a,b,c均為正實(shí)數(shù),且滿(mǎn)足a+b+c=m,求證: + + ≥3.

【答案】(Ⅰ)解:x≤﹣1,f(x)=﹣2x﹣2﹣x+2=﹣3x≥3, ﹣1<x<2,f(x)=2x+2﹣x+2=x+4∈(3,6),
x≥2,f(x)=2x+2+x﹣2=3x≥6,
∴m=3;
(Ⅱ)證明:a+b+c=3,由柯西不等式可得(a+b+c)( + + )≥(a+b+c)2 ,
+ + ≥3
【解析】(Ⅰ)分類(lèi)討論,即可求實(shí)數(shù)m的值;(Ⅱ)a+b+c=3,由柯西不等式可得(a+b+c)( + + )≥(a+b+c)2 , 即可證明結(jié)論.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用不等式的證明的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握不等式證明的幾種常用方法:常用方法有:比較法(作差,作商法)、綜合法、分析法;其它方法有:換元法、反證法、放縮法、構(gòu)造法,函數(shù)單調(diào)性法,數(shù)學(xué)歸納法等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和 ,且a1 , a4是等比數(shù)列{bn}的前兩項(xiàng),記bn與bn+1之間包含的數(shù)列{an}的項(xiàng)數(shù)為cn , 如b1與b2之間包含{an}中的項(xiàng)為a2 , a3 , 則c1=2.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)求數(shù)列{ancn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sinx+cosx,x∈R.
(1)求函數(shù)f(x)的最小正周期和最大值;
(2)函數(shù)y=f(x)的圖象可由y=sinx的圖象經(jīng)過(guò)怎么的變換得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-5:不等式選講]

設(shè)f(x)=|ax﹣1|.
(Ⅰ)若f(x)≤2的解集為[﹣6,2],求實(shí)數(shù)a的值;
(Ⅱ)當(dāng)a=2時(shí),若存在x∈R,使得不等式f(2x+1)﹣f(x﹣1)≤7﹣3m成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校高三年級(jí)有學(xué)生500人,其中男生300人,女生200人,為了研究學(xué)生的數(shù)學(xué)成績(jī)是否與性別有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,先統(tǒng)計(jì)了他們期中考試的數(shù)學(xué)分?jǐn)?shù),然后按性別分為男、女兩組,再將兩組學(xué)生的分?jǐn)?shù)分成5組:[100,110),[110,120),[120,130),[130,140),[140,150]分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.
(1)從樣本中分?jǐn)?shù)小于110分的學(xué)生中隨機(jī)抽取2人,求兩人恰好為一男一女的概率;
(2)若規(guī)定分?jǐn)?shù)不小于130分的學(xué)生為“數(shù)學(xué)尖子生”,請(qǐng)你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“數(shù)學(xué)尖子生與性別有關(guān)”?

P(K2≥k0

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

附:K2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》中,將底面為長(zhǎng)方形且有一條側(cè)棱與底面垂直的四棱錐稱(chēng)之為陽(yáng)馬,將四個(gè)面都為直角三角形的四面體稱(chēng)之為鱉臑. 如圖,在陽(yáng)馬P﹣ABCD中,側(cè)棱PD⊥底面ABCD,且PD=CD,E為PC中點(diǎn),點(diǎn)F在PB上,且PB⊥平面DEF,連接BD,BE.
(Ⅰ)證明:DE⊥平面PBC;
(Ⅱ)試判斷四面體DBEF是否為鱉臑,若是,寫(xiě)出其每個(gè)面的直角(只需寫(xiě)出結(jié)論);若不是,說(shuō)明理由;
(Ⅲ)已知AD=2, ,求二面角F﹣AD﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程(t+1)cosx﹣tsinx=t+2在(0,π)上有實(shí)根.則實(shí)數(shù)t的最大值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,半圓C的極坐標(biāo)方程為ρ=2cosθ,θ∈[0, ]
(1)求C的參數(shù)方程;
(2)設(shè)點(diǎn)D在半圓C上,半圓C在D處的切線(xiàn)與直線(xiàn)l:y= x+2垂直,根據(jù)(1)中你得到的參數(shù)方程,求直線(xiàn)CD的傾斜角及D的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)正方體圖形中,為正方體的兩個(gè)頂點(diǎn),分別為其所在棱的中點(diǎn),能得出平面的圖形的序號(hào)是(  )

A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

同步練習(xí)冊(cè)答案