已知f(x)=|x|-|x+1|.
(1)求不等式f(x)≤0的解集A;
(2)若不等式mx+m-1>0對任何x∈A恒成立,求m的取值范圍.
考點(diǎn):絕對值不等式的解法
專題:不等式的解法及應(yīng)用
分析:(1)不等式f(x)≤0,即|x|≤|x+1|,平方求得不等式的解集.
(2)由題意可得當(dāng)x≥-
1
2
時(shí),m>
1
x+1
恒成立.利用單調(diào)性求得函數(shù)y=
1
x+1
在[-
1
2
,+∞)上的最大值為2,從而其肚餓m的范圍.
解答: 解:(1)不等式f(x)≤0,即|x|-|x+1|≤0,即|x|≤|x+1|,
平方求得 x≥-
1
2
,故不等式的解集為[-
1
2
,+∞).
(2)由題意可得當(dāng)x≥-
1
2
時(shí),mx+m-1>0恒成立,即 m>
1
x+1
 恒成立.
由于函數(shù)y=
1
x+1
在[-
1
2
,+∞)上是減函數(shù),故y的最大值為
1
-
1
2
+1
=2,
故有m≥2,即m的范圍為[2,+∞).
點(diǎn)評:本題主要考查分式不等式的解法,函數(shù)的恒成立問題.利用單調(diào)性求函數(shù)的最值,體現(xiàn)了等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是首項(xiàng)為1的等比數(shù)列,Sn是{an}的前n項(xiàng)和,且9S3=S6
(1)求{an}的通項(xiàng)公式an
(2)若數(shù)若數(shù)列{bn}滿足:b1=
1
a1
,b2=
1
a1
+
1
a2
,b3=
1
a1
+
1
a2
+
1
a3
,bn=
1
a1
+
1
a2
+
1
a3
+…+
1
an
,設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn,求證:Tn>2n-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了考察某種藥物預(yù)防疾病的效果,工作人員進(jìn)行了動物試驗(yàn),得到如下丟失數(shù)據(jù)的列聯(lián)表:
藥物試驗(yàn)列聯(lián)表
患病 未患病 總計(jì)
沒服用藥 20 30 50
服用藥 x y 50
總計(jì) M N 100
工作人員曾用分層抽樣的方法從50只服用藥的動物中抽查10個(gè)進(jìn)行重點(diǎn)跟蹤試驗(yàn),知道其中患病的有2只.求出列聯(lián)表中數(shù)據(jù)x、y、M、N的值;能夠有97.5%的把握認(rèn)為藥物有效嗎?
參考數(shù)據(jù)
P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.84 5.024 6.635 7.879 10.828
參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列的通項(xiàng)為an=2n-19,前n項(xiàng)和記為sn,求下列問題:
(1)求sn
(2)當(dāng)n是什么值時(shí),sn有最小值,最小值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=
(1-i)2+3(1+i)
2-i

(1)求z的共軛復(fù)數(shù)
.
z
;
(2)若az+b=1-i,求實(shí)數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)與圓C2:x2+y2=b2,若橢圓C1上存在點(diǎn)P,使得由點(diǎn)P所作的圓C2的兩條切線互相垂直,則橢圓C1的離心率的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

動點(diǎn)P(a,b)在區(qū)域
x+y-2≤0
x-y≥0
y≥0
上運(yùn)動,則w=
a+b-3
a-1
的范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,∠A=30°,AB,BC分別是
3
+
2
,
3
-
2
的等差中項(xiàng)與等比中項(xiàng),則△ABC的面積等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F為拋物線y2=4x的焦點(diǎn),A,B,C為拋物線上三點(diǎn),若點(diǎn)A(1,2),△ABC的重心與拋物線的焦點(diǎn)F重合,則邊所在直線BC的方程為
 

查看答案和解析>>

同步練習(xí)冊答案