【題目】已知函數(shù).

(1)當(dāng)時(shí),判斷函數(shù)的奇偶性并證明;

(2)討論的零點(diǎn)個(gè)數(shù).

【答案】詳見(jiàn)解析; 詳見(jiàn)解析.

【解析】試題分析:(1)利用奇偶性的定義判斷并證明得為奇函數(shù);(2)分參得,判斷其單調(diào)性和值域,得零點(diǎn)個(gè)數(shù)的情況。

試題解析:

解法一:(Ⅰ)當(dāng)時(shí),函數(shù),該函數(shù)為奇函數(shù).

證明如下:

依題意得函數(shù)的定義域?yàn)?/span>R,

所以,函數(shù)為奇函數(shù).

(Ⅱ)因?yàn)?/span>

所以 ,

因?yàn)楹瘮?shù)上單調(diào)遞增且值域?yàn)?/span>

所以, 上單調(diào)遞減且值域?yàn)?/span>

所以,當(dāng)時(shí),函數(shù)無(wú)零點(diǎn);

當(dāng)時(shí),函數(shù)有唯一零點(diǎn).

解法二:(Ⅰ)當(dāng)時(shí),函數(shù),該函數(shù)為奇函數(shù).

證明如下:

依題意有函數(shù)定義域?yàn)?/span>R,

=

.

所以,函數(shù)為奇函數(shù).

(Ⅱ)問(wèn)題等價(jià)于討論方程=0的解的個(gè)數(shù)。

,得

當(dāng)時(shí),得,即方程無(wú)解;

當(dāng)時(shí),得,

當(dāng)時(shí),方程有唯一解;

當(dāng)時(shí),方程無(wú)解.

綜上所述,當(dāng)時(shí),函數(shù)無(wú)零點(diǎn);

當(dāng)時(shí),函數(shù)有唯一零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)常年生產(chǎn)一種出口產(chǎn)品,根據(jù)預(yù)測(cè)可知,進(jìn)入21世紀(jì)以來(lái),該產(chǎn)品的產(chǎn)量平穩(wěn)增長(zhǎng).記2009年為第1年,且前4年中,第年與年產(chǎn)量萬(wàn)件之間的關(guān)系如下表所示:

近似符合以下三種函數(shù)模型之一: = .

(1)找出你認(rèn)為最適合的函數(shù)模型,并說(shuō)明理由,然后選取其中你認(rèn)為最適合的數(shù)據(jù)求出相應(yīng)的解析式;

(2)因遭受某國(guó)對(duì)該產(chǎn)品進(jìn)行反傾銷的影響,2015年的年產(chǎn)量比預(yù)計(jì)減少,試根據(jù)所建立的函數(shù)模型,確定2015年的年產(chǎn)量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=aln(x+1)+ x2﹣x,其中a為實(shí)數(shù).
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1 , x2 , 且x1<x2 , 求證:2f(x2)﹣x1>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,△ABC為正三角形,CE⊥平面ABC,BD∥CE且CE=AC=2BD,試在AE上確定一點(diǎn)M,使得DM∥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知過(guò)點(diǎn)A(0,1)且斜率為k的直線l與圓C:(x﹣2)2+(y﹣3)2=1交于點(diǎn)M,N兩點(diǎn).
(1)求k的取值范圍;
(2)請(qǐng)問(wèn)是否存在實(shí)數(shù)k使得 (其中O為坐標(biāo)原點(diǎn)),如果存在請(qǐng)求出k的值,并求|MN|;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)
(1)求 極值;
(2)當(dāng) 時(shí), ,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了研究家用轎車在高速公路上的車速情況,交通部門對(duì)100名家用轎車駕駛員進(jìn)行調(diào)查,得到其在高速公路上行駛時(shí)的平均車速情況為:在55名男性駕駛員中,平均車速超過(guò)100km/h的有40人,不超過(guò)100km/h的有15人.在45名女性駕駛員中,平均車速超過(guò)100km/h的有20人,不超過(guò)100km/h的有25人.
(1)完成下面的列聯(lián)表,并判斷是否有99.5%的把握認(rèn)為平均車速超過(guò)100km/h的人與性別有關(guān).

平均車速超過(guò)
100km/h人數(shù)

平均車速不超過(guò)
100km/h人數(shù)

合計(jì)

男性駕駛員人數(shù)

女性駕駛員人數(shù)

合計(jì)


(2)以上述數(shù)據(jù)樣本來(lái)估計(jì)總體,現(xiàn)從高速公路上行駛的大量家用轎車中隨機(jī)抽取3輛,記這3輛車中駕駛員為男性且車速超過(guò)100km/h的車輛數(shù)為 ,若每次抽取的結(jié)果是相互獨(dú)立的,求 的分布列和數(shù)學(xué)期望.
參考公式與數(shù)據(jù): ,其中

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是( )
A.函數(shù) 的圖象與直線 可能有兩個(gè)交點(diǎn);
B.函數(shù) 與函數(shù) 是同一函數(shù);
C.對(duì)于 上的函數(shù) ,若有 ,那么函數(shù) 內(nèi)有零點(diǎn);
D.對(duì)于指數(shù)函數(shù) ( )與冪函數(shù) ( ),總存在一個(gè) ,當(dāng) 時(shí),就會(huì)有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC,AB=8,BC=10,AC=6,DB⊥平面ABC,AE∥FC∥BD,BD=3,F(xiàn)C=4,AE=5,求此幾何體的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案