【題目】已知橢圓 的右焦點為F,設(shè)直線l:x=5與x軸的交點為E,過點F且斜率為k的直線l1與橢圓交于A,B兩點,M為線段EF的中點.
(I)若直線l1的傾斜角為 ,求△ABM的面積S的值;
(Ⅱ)過點B作直線BN⊥l于點N,證明:A,M,N三點共線.

【答案】解:(I)由題意可知:右焦點F(1,0),E(5,0),M(3,0),
設(shè)A(x1 , y1),B(x2 , y2),
由直線l1的傾斜角為 ,則k=1,
直線l1的方程y=x﹣1,即x=y+1,
,整理得:9x2+8﹣16=0.
則y1+y2=﹣ ,y1y2=﹣ ,
△ABM的面積S,S= 丨FM丨丨y1﹣y2丨=丨y1﹣y2丨= =
∴△ABM的面積S的值 ;
(Ⅱ)證明:設(shè)直線l1的方程為y=k(x﹣1),
,整理得:(4+5k2)x2﹣10k2x+5k2﹣20=0.
則x1+x2= ,x1x2=
直線BN⊥l于點N,則N(5,y2),
由kAM= ,kMN= ,
而y2(3﹣x1)﹣2(﹣y1)=k(x2﹣1)(3﹣x1)+2k(x1﹣1)=﹣k[x1x2﹣3(x1+x2)+5],
=﹣k( ﹣3× +5),
=0,
∴kAM=kMN
∴A,M,N三點共線.
【解析】(I)由題意,直線l1的x=y+1,代入橢圓方程,由韋達定理,弦長公式即可求得△ABM的面積S的值;(Ⅱ)直線y=k(x﹣1),代入橢圓方程,由韋達定理,利用直線的斜率公式,即可求得kAM=kMN , A,M,N三點共線.
【考點精析】通過靈活運用橢圓的標準方程,掌握橢圓標準方程焦點在x軸:,焦點在y軸:即可以解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)f(x)=ax-2.

(1)當a=3時,解不等式|f(x)|<4;

(2)解關(guān)于x的不等式|f(x)|<4;

(3)若關(guān)于x的不等式|f(x)|≤3對任意x∈[0,1]恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,小明想將短軸長為2,長軸長為4的一個半橢圓形紙片剪成等腰梯形ABDE,且梯形ABDE內(nèi)接于半橢圓,DEAB,AB為短軸,OC為長半軸

(1)求梯形ABDE上底邊DE與高OH長的關(guān)系式;

(2)若半橢圓上到H的距離最小的點恰好為C點,求底邊DE的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在棱長為的正方體中,分別為棱的中點,是線段的中點,若點分別為線段上的動點,則的最小值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,設(shè)為不同的兩點,直線的方程為,設(shè),其中均為實數(shù).下列四個說法中:

①存在實數(shù),使點在直線上;

②若,則過兩點的直線與直線重合;

③若,則直線經(jīng)過線段的中點;

④若,則點在直線的同側(cè),且直線與線段的延長線相交.

所有結(jié)論正確的說法的序號是______________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】張三同學從7歲起到13歲每年生日時對自己的身高測量后記錄如表:

年齡 (歲)

7

8

9

10

11

12

13

身高 (cm)

121

128

135

141

148

154

160

(Ⅰ)求身高y關(guān)于年齡x的線性回歸方程;
(Ⅱ)利用(Ⅰ)中的線性回歸方程,分析張三同學7歲至13歲身高的變化情況,如17歲之前都符合這一變化,請預測張三同學15歲時的身高.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
= ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對某校高一年級學生參加社區(qū)服務次數(shù)進行統(tǒng)計,隨機抽取M名學生作為樣本,得到這M名學生參加社區(qū)服務的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖如下:

分組

頻數(shù)

頻率

[10,15)

10

0.25

[15,20)

25

n

[20,25)

m

p

[25,30)

2

0.05

合計

M

1

(1)求出表中Mp及圖中a的值;

(2)若該校高一學生有360人,試估計該校高一學生參加社區(qū)服務的次數(shù)在區(qū)間[15,20)內(nèi)的人數(shù);

(3)在所取樣本中,從參加社區(qū)服務的次數(shù)不少于20次的學生中任選2人,請列舉出所有基本事件,并求至多1人參加社區(qū)服務次數(shù)在區(qū)間[20,25)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下三個關(guān)于圓錐曲線的命題中:

①設(shè)為兩個定點,為非零常數(shù),若,則動點的軌跡是雙曲線;

②方程的兩根可分別作為橢圓和雙曲線的離心率;

③雙曲線與橢圓有相同的焦點;

④已知拋物線,以過焦點的一條弦為直徑作圓,則此圓與準線相切,其中真命題為__________.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】交強險是車主必須為機動車購買的險種.若普通6座以下私家車投保交強險第一年的費用(基準保費)統(tǒng)一為a元,在下一年續(xù)保時,實行的是費率浮動機制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費率也就越高,具體浮動情況如表:

交強險浮動因素和浮動費率比率表

浮動因素

浮動比率

A1

上一個年度未發(fā)生有責任道路交通事故

下浮10%

A2

上兩個年度未發(fā)生有責任道路交通事故

下浮20%

A3

上三個及以上年度未發(fā)生有責任道路交通事故

下浮30%

A4

上一個年度發(fā)生一次有責任不涉及死亡的道路交通事故

0%

A5

上一個年度發(fā)生兩次及兩次以上有責任道路交通事故

上浮10%

A6

上一個年度發(fā)生有責任道路交通死亡事故

上浮30%

某機構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:

類型

A1

A2

A3

A4

A5

A6

數(shù)量

10

5

5

20

15

5

以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(Ⅰ)按照我國《機動車交通事故責任強制保險條例》汽車交強險價格的規(guī)定a=950.記X為某同學家的一輛該品牌車在第四年續(xù)保時的費用,求X的分布列與數(shù)學期望值;(數(shù)學期望值保留到個位數(shù)字)
(Ⅱ)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車.假設(shè)購進一輛事故車虧損5000元,一輛非事故車盈利10000元:
①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
②若該銷售商一次購進100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.

查看答案和解析>>

同步練習冊答案